SAR image target recognition algorithm based on improved residual shrinkage network

Baodai Shi, Qin Zhang, Yuhuan Li, Miaomiao Wu
{"title":"SAR image target recognition algorithm based on improved residual shrinkage network","authors":"Baodai Shi, Qin Zhang, Yuhuan Li, Miaomiao Wu","doi":"10.1109/AINIT54228.2021.00026","DOIUrl":null,"url":null,"abstract":"Target recognition in SAR image has always been a research hotspot in the world. Aiming at the problem of low target recognition rate in SAR image, this paper proposes a neural network model suitable for SAR image classification, improves the residual shrinkage network, and uses two-channel one-dimensional convolution to improve the residual shrinkage network. On the premise of consuming only a small amount of computation, the information extraction degree of the module is improved, and it is used as the backbone to build the model. On the premise of low parameter quantity and complexity, the recognition rate is 99.4%.","PeriodicalId":326400,"journal":{"name":"2021 2nd International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT)","volume":"24 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 2nd International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AINIT54228.2021.00026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Target recognition in SAR image has always been a research hotspot in the world. Aiming at the problem of low target recognition rate in SAR image, this paper proposes a neural network model suitable for SAR image classification, improves the residual shrinkage network, and uses two-channel one-dimensional convolution to improve the residual shrinkage network. On the premise of consuming only a small amount of computation, the information extraction degree of the module is improved, and it is used as the backbone to build the model. On the premise of low parameter quantity and complexity, the recognition rate is 99.4%.
基于改进残差收缩网络的SAR图像目标识别算法
SAR图像中的目标识别一直是国际上的研究热点。针对SAR图像目标识别率低的问题,本文提出了一种适合SAR图像分类的神经网络模型,对残差收缩网络进行了改进,并采用双通道一维卷积对残差收缩网络进行了改进。在只消耗少量计算量的前提下,提高了模块的信息提取程度,并将其作为构建模型的主干。在参数数量和复杂度较低的前提下,识别率达到99.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信