A Data-driven Fault Classification Method for Microgrids

Jingsong Wang, Yongfu Li, Xiaoxiao Luo, Han Zhang, W. Sima, Ming Yang
{"title":"A Data-driven Fault Classification Method for Microgrids","authors":"Jingsong Wang, Yongfu Li, Xiaoxiao Luo, Han Zhang, W. Sima, Ming Yang","doi":"10.1109/ICHVE53725.2022.10014449","DOIUrl":null,"url":null,"abstract":"This paper proposes a method that combines wavelet decomposition and deep learning for fault classification in microgrids (MGs). Random Search optimization is used to find the best wavelet function for matching traces to extract deep features of data. And these extracted deep features are used as complementary inputs to a deep learning model. One-dimension convolutional neural network (1-D CNN) is used to complete the secondary conversion of data features and high-dimensional feature mapping. The data are transformed by dimensionality and bidirectional long and short-term memory network. The data information mining is completed by using the multi-branch structure of the network to filter and merge the multidimensional effective information learned from each network branch. We also compare and analyze five different classification techniques (i.e., k-nearest neighbor(KNN), decision tree(DT), support vector machine(SVM), random forest(RF), and XGBoost(XGB) $)$ and compare their performance statistically. After modeling the MGs system in the simulation software, the Consortium for Electrical Reliability Technology Solutions (CERTS) MG effectively illustrates the validity of our proposed method.","PeriodicalId":125983,"journal":{"name":"2022 IEEE International Conference on High Voltage Engineering and Applications (ICHVE)","volume":"23 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on High Voltage Engineering and Applications (ICHVE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICHVE53725.2022.10014449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a method that combines wavelet decomposition and deep learning for fault classification in microgrids (MGs). Random Search optimization is used to find the best wavelet function for matching traces to extract deep features of data. And these extracted deep features are used as complementary inputs to a deep learning model. One-dimension convolutional neural network (1-D CNN) is used to complete the secondary conversion of data features and high-dimensional feature mapping. The data are transformed by dimensionality and bidirectional long and short-term memory network. The data information mining is completed by using the multi-branch structure of the network to filter and merge the multidimensional effective information learned from each network branch. We also compare and analyze five different classification techniques (i.e., k-nearest neighbor(KNN), decision tree(DT), support vector machine(SVM), random forest(RF), and XGBoost(XGB) $)$ and compare their performance statistically. After modeling the MGs system in the simulation software, the Consortium for Electrical Reliability Technology Solutions (CERTS) MG effectively illustrates the validity of our proposed method.
数据驱动的微电网故障分类方法
提出了一种将小波分解与深度学习相结合的微电网故障分类方法。采用随机搜索优化方法寻找匹配轨迹的最佳小波函数,提取数据的深层特征。这些提取的深度特征被用作深度学习模型的补充输入。利用一维卷积神经网络(1-D CNN)完成数据特征的二次转换和高维特征映射。数据通过多维度和双向长短期记忆网络进行转换。数据信息挖掘是利用网络的多分支结构,对从网络各分支中学习到的多维有效信息进行过滤和合并来完成的。我们还比较和分析了五种不同的分类技术(即k-最近邻(KNN)、决策树(DT)、支持向量机(SVM)、随机森林(RF)和XGBoost(XGB) $)$,并对它们的性能进行了统计比较。电气可靠性技术解决方案联盟(CERTS)在仿真软件中对MG系统进行建模后,有效地验证了所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信