{"title":"Hashtag retrieval in a microblogging environment","authors":"Miles Efron","doi":"10.1145/1835449.1835616","DOIUrl":null,"url":null,"abstract":"Microblog services let users broadcast brief textual messages to people who \"follow\" their activity. Often these posts contain terms called hashtags, markers of a post's meaning, audience, etc. This poster treats the following problem: given a user's stated topical interest, retrieve useful hashtags from microblog posts. Our premise is that a user interested in topic x might like to find hashtags that are often applied to posts about x. This poster proposes a language modeling approach to hashtag retrieval. The main contribution is a novel method of relevance feedback based on hashtags. The approach is tested on a corpus of data harvested from twitter.com.","PeriodicalId":378368,"journal":{"name":"Proceedings of the 33rd international ACM SIGIR conference on Research and development in information retrieval","volume":"128 12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"182","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 33rd international ACM SIGIR conference on Research and development in information retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1835449.1835616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 182
Abstract
Microblog services let users broadcast brief textual messages to people who "follow" their activity. Often these posts contain terms called hashtags, markers of a post's meaning, audience, etc. This poster treats the following problem: given a user's stated topical interest, retrieve useful hashtags from microblog posts. Our premise is that a user interested in topic x might like to find hashtags that are often applied to posts about x. This poster proposes a language modeling approach to hashtag retrieval. The main contribution is a novel method of relevance feedback based on hashtags. The approach is tested on a corpus of data harvested from twitter.com.