Second order oscillatory system parameter estimation

T. El-Ali, F. Scarpino, T. Kelly
{"title":"Second order oscillatory system parameter estimation","authors":"T. El-Ali, F. Scarpino, T. Kelly","doi":"10.1109/NAECON.1993.290902","DOIUrl":null,"url":null,"abstract":"In the absence of noise (or other uncertainty in measurement), the state vector of a deterministic, full state estimator can be made to systematically converge to the state vector of the system under observation. The above is true when the as reflected in the observer, is \"perfect\". When the modeling of the system under observation is less than perfect, the convergence characteristics of the observer are, in some manner, modified. A study of the behavior of the state estimator in the presence of errors in the plant model is usually undertaken. In contrast, a study of the estimation of the modified plant by the means provided in the information which may be gleaned from the modification in the convergence characteristics is undertaken. In this paper, the modified plant is determined by using the \"system-observer pair\" error dynamics.<<ETX>>","PeriodicalId":183796,"journal":{"name":"Proceedings of the IEEE 1993 National Aerospace and Electronics Conference-NAECON 1993","volume":"32 12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE 1993 National Aerospace and Electronics Conference-NAECON 1993","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON.1993.290902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In the absence of noise (or other uncertainty in measurement), the state vector of a deterministic, full state estimator can be made to systematically converge to the state vector of the system under observation. The above is true when the as reflected in the observer, is "perfect". When the modeling of the system under observation is less than perfect, the convergence characteristics of the observer are, in some manner, modified. A study of the behavior of the state estimator in the presence of errors in the plant model is usually undertaken. In contrast, a study of the estimation of the modified plant by the means provided in the information which may be gleaned from the modification in the convergence characteristics is undertaken. In this paper, the modified plant is determined by using the "system-observer pair" error dynamics.<>
二阶振荡系统参数估计
在没有噪声(或测量中的其他不确定性)的情况下,可以使确定性全状态估计器的状态向量系统地收敛到被观察系统的状态向量。以上是真的,当它作为观察者反映出来的时候,是“完美的”。当被观测系统的建模不够完善时,以某种方式修改观测器的收敛特性。在存在误差的植物模型中,通常进行状态估计器行为的研究。与此相反,利用从收敛特性的修改中收集到的信息所提供的方法,对修改后的对象进行了估计研究。本文采用“系统-观测器对”误差动力学来确定被修正对象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信