Errata and Corrigenda: Bayesian Relative Importance Analysis of Logistic Regression Models: Journal of Statistics Applications & Probability Letters (Vol. 3 (2016):53)

Xiaoyin Wang
{"title":"Errata and Corrigenda: Bayesian Relative Importance Analysis of Logistic Regression Models: Journal of Statistics Applications & Probability Letters (Vol. 3 (2016):53)","authors":"Xiaoyin Wang","doi":"10.18576/jsapl/060201","DOIUrl":null,"url":null,"abstract":"The research paper “Bayesian relative importance analysis of logistic regression models” in Journal of Statistics Applications & Probability Letters (Vol. 3 (2016):53-69) extended the relative importance research question in the Wang et al. (2013) from the ordinary linear regression model to the logistic regression model applying the Bayesian approach with different likelihood functions, prior distributions and posterior distributions. The numerical example and simulation studies were all performed on the logistics regression base. The Wang et al (2013) and Wang (2016) are truly independent research about the predictors’ relative importance conducted in the Bayesian framework, and the previous paper was cited.","PeriodicalId":432299,"journal":{"name":"Journal of Statistics Applications & Probability Letters","volume":"43 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistics Applications & Probability Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18576/jsapl/060201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The research paper “Bayesian relative importance analysis of logistic regression models” in Journal of Statistics Applications & Probability Letters (Vol. 3 (2016):53-69) extended the relative importance research question in the Wang et al. (2013) from the ordinary linear regression model to the logistic regression model applying the Bayesian approach with different likelihood functions, prior distributions and posterior distributions. The numerical example and simulation studies were all performed on the logistics regression base. The Wang et al (2013) and Wang (2016) are truly independent research about the predictors’ relative importance conducted in the Bayesian framework, and the previous paper was cited.
误表和更正:逻辑回归模型的贝叶斯相对重要性分析:Journal of Statistics Applications & Probability Letters (Vol. 3 (2016):53)
Journal of Statistics Applications & Probability Letters (Vol. 3(2016):53-69)的研究论文“logistic回归模型的Bayesian相对重要性分析”将Wang et al.(2013)中的相对重要性研究问题从普通线性回归模型扩展到采用不同似然函数、先验分布和后验分布的贝叶斯方法的logistic回归模型。数值算例和仿真研究均在logistic回归基础上进行。Wang et al(2013)和Wang(2016)在贝叶斯框架下对预测因子的相对重要性进行了真正独立的研究,并引用了之前的论文。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信