Bootstrapping Natural Language Querying on Process Automation Data

Xue Han, L. Hu, J. Sen, Yabin Dang, Buyu Gao, Vatche Isahagian, Chuan Lei, Vasilis Efthymiou, Fatma Özcan, A. Quamar, Ziming Huang, Vinod Muthusamy
{"title":"Bootstrapping Natural Language Querying on Process Automation Data","authors":"Xue Han, L. Hu, J. Sen, Yabin Dang, Buyu Gao, Vatche Isahagian, Chuan Lei, Vasilis Efthymiou, Fatma Özcan, A. Quamar, Ziming Huang, Vinod Muthusamy","doi":"10.1109/SCC49832.2020.00030","DOIUrl":null,"url":null,"abstract":"Advances in the adoption of business process management platforms have led to increasing volumes runtime event logs, containing information about the execution of the process. Business users analyze this event data for real-time insights on performance and optimization opportunities. However, querying the event data is difficult for business users without knowing the details of the backend store, data schema, and query languages. Consequently, the business insights are mostly limited to static dashboards, only capturing predefined performance metrics. In this paper, we introduce an interface for business users to query the business event data using natural language, without knowing the exact schema of the event data or the query language. Moreover, we propose a bootstrapping pipeline, which utilizes both event data and business domain-specific artifacts to automatically instantiate the natural language interface over the event data. We build and evaluate our prototype over datasets from both practical projects and public challenge events data stored in Elasticsearch. Experimental results show that our system produces an average accuracy of 80% across all data sets, with high precision ( 91%) and good recall ( 81%).","PeriodicalId":274909,"journal":{"name":"2020 IEEE International Conference on Services Computing (SCC)","volume":"44 10","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Services Computing (SCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCC49832.2020.00030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Advances in the adoption of business process management platforms have led to increasing volumes runtime event logs, containing information about the execution of the process. Business users analyze this event data for real-time insights on performance and optimization opportunities. However, querying the event data is difficult for business users without knowing the details of the backend store, data schema, and query languages. Consequently, the business insights are mostly limited to static dashboards, only capturing predefined performance metrics. In this paper, we introduce an interface for business users to query the business event data using natural language, without knowing the exact schema of the event data or the query language. Moreover, we propose a bootstrapping pipeline, which utilizes both event data and business domain-specific artifacts to automatically instantiate the natural language interface over the event data. We build and evaluate our prototype over datasets from both practical projects and public challenge events data stored in Elasticsearch. Experimental results show that our system produces an average accuracy of 80% across all data sets, with high precision ( 91%) and good recall ( 81%).
过程自动化数据的自引导自然语言查询
业务流程管理平台采用的进步导致运行时事件日志的数量不断增加,其中包含有关流程执行的信息。业务用户分析此事件数据,以便实时了解性能和优化机会。但是,如果业务用户不了解后端存储、数据模式和查询语言的详细信息,则很难查询事件数据。因此,业务洞察力主要局限于静态仪表板,仅捕获预定义的性能指标。在本文中,我们为业务用户提供了一个使用自然语言查询业务事件数据的接口,而不需要知道事件数据的确切模式或查询语言。此外,我们提出了一个引导管道,它利用事件数据和业务领域特定的工件来自动实例化事件数据上的自然语言接口。我们在实际项目和存储在Elasticsearch中的公共挑战事件数据集上构建和评估我们的原型。实验结果表明,我们的系统在所有数据集上的平均准确率为80%,具有高精度(91%)和良好的召回率(81%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信