A method for change detection with multi-temporal satellite images based on Principal Component Analysis

C. Bustos, Osvaldo Campanella, K. Kpalma, F. Magnago, J. Ronsin
{"title":"A method for change detection with multi-temporal satellite images based on Principal Component Analysis","authors":"C. Bustos, Osvaldo Campanella, K. Kpalma, F. Magnago, J. Ronsin","doi":"10.1109/MULTI-TEMP.2011.6005082","DOIUrl":null,"url":null,"abstract":"Currently remote sensing, based on satellite images is one of the most important source of information for multitemporal change detection. From all types of satellite images, the multispectral images present the advantage of characterizing the earth surface in different bands; each band provides different and useful information. In this work we propose a new methodology based on linear PCA to extract useful and meaningful information from signals provided by the remote sensing, and based on it, detect temporal changes Experiments based on images of the satellite CBERS-2B corresponding to the urban and peri urban region of Rio Cuarto of Córdoba state in Argentina have given satisfactory results in change detection.","PeriodicalId":254778,"journal":{"name":"2011 6th International Workshop on the Analysis of Multi-temporal Remote Sensing Images (Multi-Temp)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 6th International Workshop on the Analysis of Multi-temporal Remote Sensing Images (Multi-Temp)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MULTI-TEMP.2011.6005082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Currently remote sensing, based on satellite images is one of the most important source of information for multitemporal change detection. From all types of satellite images, the multispectral images present the advantage of characterizing the earth surface in different bands; each band provides different and useful information. In this work we propose a new methodology based on linear PCA to extract useful and meaningful information from signals provided by the remote sensing, and based on it, detect temporal changes Experiments based on images of the satellite CBERS-2B corresponding to the urban and peri urban region of Rio Cuarto of Córdoba state in Argentina have given satisfactory results in change detection.
基于主成分分析的多时相卫星图像变化检测方法
目前,基于卫星图像的遥感是多时相变化探测最重要的信息来源之一。从各类卫星影像来看,多光谱影像具有在不同波段对地表进行表征的优势;每个波段提供不同的有用信息。本文提出了一种基于线性主成分分析的新方法,从遥感信号中提取有用和有意义的信息,并在此基础上对阿根廷Córdoba州Rio Cuarto城市和城郊CBERS-2B卫星图像进行了时间变化检测,取得了满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信