Retinal vessel segmentation using spatially weighted fuzzy c-means clustering and histogram matching

G. Kande, T. Savithri, P. Subbaiah
{"title":"Retinal vessel segmentation using spatially weighted fuzzy c-means clustering and histogram matching","authors":"G. Kande, T. Savithri, P. Subbaiah","doi":"10.1109/INDCON.2008.4768791","DOIUrl":null,"url":null,"abstract":"This paper presents a novel approach for automated segmentation of the vasculature in retinal images. The approach uses the intensity information from red and green channels of the same retinal image to correct nonuniform illumination in colour fundus images. Matched filtering is utilized to enhance the contrast of blood vessels against the background. The enhanced blood vessels are then segmented by employing spatially weighted fuzzy c-means clustering based thresholding which can well maintain the spatial structure of the vascular tree segments. Experimental results of the proposed method using STARE and DRIVE databases are superior to previously reported unsupervised methods and comparable to those obtained with the supervised methods.","PeriodicalId":196254,"journal":{"name":"2008 Annual IEEE India Conference","volume":"18 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Annual IEEE India Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDCON.2008.4768791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper presents a novel approach for automated segmentation of the vasculature in retinal images. The approach uses the intensity information from red and green channels of the same retinal image to correct nonuniform illumination in colour fundus images. Matched filtering is utilized to enhance the contrast of blood vessels against the background. The enhanced blood vessels are then segmented by employing spatially weighted fuzzy c-means clustering based thresholding which can well maintain the spatial structure of the vascular tree segments. Experimental results of the proposed method using STARE and DRIVE databases are superior to previously reported unsupervised methods and comparable to those obtained with the supervised methods.
利用空间加权模糊c均值聚类和直方图匹配进行视网膜血管分割
提出了一种自动分割视网膜血管图像的新方法。该方法利用同一张视网膜图像的红色和绿色通道的亮度信息来校正彩色眼底图像中的光照不均匀性。利用匹配滤波增强血管在背景下的对比度。然后采用基于空间加权模糊c均值聚类的阈值分割方法对增强血管进行分割,可以很好地保持血管树片段的空间结构。使用STARE和DRIVE数据库的实验结果优于先前报道的无监督方法,并且与使用有监督方法获得的结果相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信