Clustering High-frequency Stock Data for Trading Volatility Analysis

Xiao-Wei Ai, Tianming Hu, Xi Li, Hui Xiong
{"title":"Clustering High-frequency Stock Data for Trading Volatility Analysis","authors":"Xiao-Wei Ai, Tianming Hu, Xi Li, Hui Xiong","doi":"10.1109/ICMLA.2010.56","DOIUrl":null,"url":null,"abstract":"This paper proposes a Realized Trading Volatility (RTV) model for dynamically monitoring anomalous volatility in stock trading. Specifically, the RTV model first extracts the sequences for price volatility, volume volatility, and realized trading volatility. Then, the K-means algorithm is exploited for clustering the summary data of different stocks. The RTV model investigates the joint-volatility between share price and trading volume, and has the advantage of capturing anomalous trading volatility in a dynamic fashion. As a case study, we apply the RTV model for the analysis of real-world high-frequency stock data. For the resultant clusters, we focus on the categories with large volatility and study their statistical properties. Finally, we provide some empirical insights for the use of the RTV model.","PeriodicalId":336514,"journal":{"name":"2010 Ninth International Conference on Machine Learning and Applications","volume":"1 9","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Ninth International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2010.56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper proposes a Realized Trading Volatility (RTV) model for dynamically monitoring anomalous volatility in stock trading. Specifically, the RTV model first extracts the sequences for price volatility, volume volatility, and realized trading volatility. Then, the K-means algorithm is exploited for clustering the summary data of different stocks. The RTV model investigates the joint-volatility between share price and trading volume, and has the advantage of capturing anomalous trading volatility in a dynamic fashion. As a case study, we apply the RTV model for the analysis of real-world high-frequency stock data. For the resultant clusters, we focus on the categories with large volatility and study their statistical properties. Finally, we provide some empirical insights for the use of the RTV model.
聚类高频股票数据交易波动分析
本文提出了一种动态监测股票交易异常波动率的已实现交易波动率(RTV)模型。具体而言,RTV模型首先提取价格波动率、成交量波动率和实现交易波动率的序列。然后,利用K-means算法对不同股票的汇总数据进行聚类。RTV模型研究了股价和交易量之间的联合波动,并具有动态捕获异常交易波动的优势。作为一个案例研究,我们将RTV模型应用于分析现实世界的高频股票数据。对于得到的聚类,我们关注波动性较大的类别,并研究它们的统计性质。最后,我们为RTV模型的使用提供了一些经验见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信