Preferential Batch Bayesian Optimization

E. Siivola, Akash Kumar Dhaka, M. R. Andersen, Javier I. González, Pablo G. Moreno, Aki Vehtari
{"title":"Preferential Batch Bayesian Optimization","authors":"E. Siivola, Akash Kumar Dhaka, M. R. Andersen, Javier I. González, Pablo G. Moreno, Aki Vehtari","doi":"10.1109/mlsp52302.2021.9596494","DOIUrl":null,"url":null,"abstract":"Most research in Bayesian optimization (BO) has focused on direct feedback scenarios, where one has access to exact values of some expensive-to-evaluate objective. This direction has been mainly driven by the use of BO in machine learning hyperparameter configuration problems. However, in domains such as modelling human preferences, A/B tests, or recommender systems, there is a need for methods that can replace direct feedback with preferential feedback, obtained via rankings or pairwise comparisons. In this work, we present preferential batch Bayesian optimization (PBBO), a new framework that allows finding the optimum of a latent function of interest, given any type of parallel preferential feedback for a group of two or more points. We do so by using a Gaussian process model with a likelihood specially designed to enable parallel and efficient data collection mechanisms, which are key in modern machine learning. We show how the acquisitions developed under this framework generalize and augment previous approaches in Bayesian optimization, expanding the use of these techniques to a wider range of domains. An extensive simulation study shows the benefits of this approach, both with simulated functions and four real data sets.","PeriodicalId":156116,"journal":{"name":"2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP)","volume":"207 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/mlsp52302.2021.9596494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Most research in Bayesian optimization (BO) has focused on direct feedback scenarios, where one has access to exact values of some expensive-to-evaluate objective. This direction has been mainly driven by the use of BO in machine learning hyperparameter configuration problems. However, in domains such as modelling human preferences, A/B tests, or recommender systems, there is a need for methods that can replace direct feedback with preferential feedback, obtained via rankings or pairwise comparisons. In this work, we present preferential batch Bayesian optimization (PBBO), a new framework that allows finding the optimum of a latent function of interest, given any type of parallel preferential feedback for a group of two or more points. We do so by using a Gaussian process model with a likelihood specially designed to enable parallel and efficient data collection mechanisms, which are key in modern machine learning. We show how the acquisitions developed under this framework generalize and augment previous approaches in Bayesian optimization, expanding the use of these techniques to a wider range of domains. An extensive simulation study shows the benefits of this approach, both with simulated functions and four real data sets.
优先批处理贝叶斯优化
贝叶斯优化(BO)的大多数研究都集中在直接反馈场景上,在这些场景中,人们可以获得一些难以评估的目标的精确值。这个方向主要是由BO在机器学习超参数配置问题中的应用所推动的。然而,在模拟人类偏好、A/B测试或推荐系统等领域,需要一种方法,可以用通过排名或两两比较获得的优先反馈取代直接反馈。在这项工作中,我们提出了优先批贝叶斯优化(PBBO),这是一个新的框架,允许在给定两个或多个点的任何类型的并行优先反馈的情况下,找到感兴趣的潜在函数的最优解。我们通过使用高斯过程模型来实现这一目标,该模型具有专门设计的可能性,以实现并行和高效的数据收集机制,这是现代机器学习的关键。我们展示了在此框架下开发的获取如何推广和增强贝叶斯优化中的先前方法,将这些技术的使用扩展到更广泛的领域。广泛的仿真研究显示了这种方法的优点,包括模拟函数和四个真实数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信