ParallelFusion

Jingyu Lee, Yunxin Liu, Youngki Lee
{"title":"ParallelFusion","authors":"Jingyu Lee, Yunxin Liu, Youngki Lee","doi":"10.1145/3469116.3470014","DOIUrl":null,"url":null,"abstract":"Mobile GPUs are extremely under-utilized for DNN computations across different mobile deep learning frameworks and multiple DNNs with various complexities. We explore the feasibility of batching and it improves the throughput by up to 35%. However, real-time applications in mobile have a limited amount of requests to get a benefit from batching. To tackle the challenge, we present ParallelFusion technique that enables concurrent execution of heterogeneous operators to further utilize the mobile GPU. We implemented ParallelFusion over the MNN framework and evaluated on 6 state-of-the-art DNNs. Our evaluation shows that Parallel Fusion achieves up to 195% to 218% throughput with fused execution of 2 and 3 operators compared to single DNN inference.","PeriodicalId":162801,"journal":{"name":"Proceedings of the 5th International Workshop on Embedded and Mobile Deep Learning","volume":"43 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th International Workshop on Embedded and Mobile Deep Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3469116.3470014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Mobile GPUs are extremely under-utilized for DNN computations across different mobile deep learning frameworks and multiple DNNs with various complexities. We explore the feasibility of batching and it improves the throughput by up to 35%. However, real-time applications in mobile have a limited amount of requests to get a benefit from batching. To tackle the challenge, we present ParallelFusion technique that enables concurrent execution of heterogeneous operators to further utilize the mobile GPU. We implemented ParallelFusion over the MNN framework and evaluated on 6 state-of-the-art DNNs. Our evaluation shows that Parallel Fusion achieves up to 195% to 218% throughput with fused execution of 2 and 3 operators compared to single DNN inference.
ParallelFusion
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信