Form classification

K. Reddy, V. Govindaraju
{"title":"Form classification","authors":"K. Reddy, V. Govindaraju","doi":"10.1117/12.766737","DOIUrl":null,"url":null,"abstract":"The problem of form classification is to assign a single-page form image to one of a set of predefined form types or classes. We classify the form images using low level pixel density information from the binary images of the documents. In this paper, we solve the form classification problem with a classifier based on the k-means algorithm, supported by adaptive boosting. Our classification method is tested on the NIST scanned tax forms data bases (special forms databases 2 and 6) which include machine-typed and handwritten documents. Our method improves the performance over published results on the same databases, while still using a simple set of image features.","PeriodicalId":152377,"journal":{"name":"Document Recognition and Retrieval","volume":"159 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Document Recognition and Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.766737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

The problem of form classification is to assign a single-page form image to one of a set of predefined form types or classes. We classify the form images using low level pixel density information from the binary images of the documents. In this paper, we solve the form classification problem with a classifier based on the k-means algorithm, supported by adaptive boosting. Our classification method is tested on the NIST scanned tax forms data bases (special forms databases 2 and 6) which include machine-typed and handwritten documents. Our method improves the performance over published results on the same databases, while still using a simple set of image features.
形式分类
表单分类的问题是将单页表单图像分配给一组预定义的表单类型或类之一。我们使用来自文档二值图像的低级别像素密度信息对表单图像进行分类。在本文中,我们使用基于k-means算法的分类器来解决表单分类问题,并支持自适应增强。我们的分类方法在NIST扫描的税务表格数据库(特殊表格数据库2和6)上进行了测试,其中包括机器输入的和手写的文档。我们的方法提高了在相同数据库上发布的结果的性能,同时仍然使用一组简单的图像特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信