Charly Castes, E. Agullo, Olivier Aumage, Emmanuelle Saillard
{"title":"Decentralized in-order execution of a sequential task-based code for shared-memory architectures","authors":"Charly Castes, E. Agullo, Olivier Aumage, Emmanuelle Saillard","doi":"10.1109/IPDPSW55747.2022.00095","DOIUrl":null,"url":null,"abstract":"The hardware complexity of modern machines makes the design of adequate programming models crucial for jointly ensuring performance, portability, and productivity in high-performance computing (HPC). Sequential task-based programming models paired with advanced runtime systems allow the programmer to write a sequential algorithm independently of the hardware architecture in a productive and portable manner, and let a third party software layer -the runtime system- deal with the burden of scheduling a correct, parallel execution of that algorithm to ensure performance. Many HPC algorithms have successfully been implemented following this paradigm, as a testimony of its effectiveness. Developing algorithms that specifically require fine-grained tasks along this model is still considered prohibitive, however, due to per-task management overhead [1], forcing the programmer to resort to a less abstract, and hence more complex “task+X” model. We thus investigate the possibility to offer a tailored execution model, trading dynamic mapping for efficiency by using a decentralized, conservative in-order execution of the task flow, while preserving the benefits of relying on the sequential task-based programming model. We propose a formal specification of the execution model as well as a prototype implementation, which we assess on a shared-memory multicore architecture with several synthetic workloads. The results show that under the condition of a proper task mapping supplied by the programmer, the pressure on the runtime system is significantly reduced and the execution of fine-grained task flows is much more efficient.","PeriodicalId":286968,"journal":{"name":"2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW55747.2022.00095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The hardware complexity of modern machines makes the design of adequate programming models crucial for jointly ensuring performance, portability, and productivity in high-performance computing (HPC). Sequential task-based programming models paired with advanced runtime systems allow the programmer to write a sequential algorithm independently of the hardware architecture in a productive and portable manner, and let a third party software layer -the runtime system- deal with the burden of scheduling a correct, parallel execution of that algorithm to ensure performance. Many HPC algorithms have successfully been implemented following this paradigm, as a testimony of its effectiveness. Developing algorithms that specifically require fine-grained tasks along this model is still considered prohibitive, however, due to per-task management overhead [1], forcing the programmer to resort to a less abstract, and hence more complex “task+X” model. We thus investigate the possibility to offer a tailored execution model, trading dynamic mapping for efficiency by using a decentralized, conservative in-order execution of the task flow, while preserving the benefits of relying on the sequential task-based programming model. We propose a formal specification of the execution model as well as a prototype implementation, which we assess on a shared-memory multicore architecture with several synthetic workloads. The results show that under the condition of a proper task mapping supplied by the programmer, the pressure on the runtime system is significantly reduced and the execution of fine-grained task flows is much more efficient.