Research on Component Retrieval and Matching Methods

Xiangli Qu, Xiwei Feng, Y. Zhang, Siyuan Wang, Lei Sun, Pengcheng Hua, Yujie Wang
{"title":"Research on Component Retrieval and Matching Methods","authors":"Xiangli Qu, Xiwei Feng, Y. Zhang, Siyuan Wang, Lei Sun, Pengcheng Hua, Yujie Wang","doi":"10.1109/scset55041.2022.00087","DOIUrl":null,"url":null,"abstract":"Aiming at how to quickly retrieve the target component from the huge component library, this paper proposes a component retrieval method based on facet classification, which uses component keyword set to facet description of the component and constructs the component vectorized model. The idea of layering is adopted to divide the components in detail. The K-means clustering algorithm based on the maximum and minimum distances is used to cluster the components, so that the problem of component matching is transformed into the calculation of the cosine similarity of component vectors. This method can narrow down the search scope and effectively improve the search efficiency.","PeriodicalId":446933,"journal":{"name":"2022 International Seminar on Computer Science and Engineering Technology (SCSET)","volume":"8 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Seminar on Computer Science and Engineering Technology (SCSET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/scset55041.2022.00087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Aiming at how to quickly retrieve the target component from the huge component library, this paper proposes a component retrieval method based on facet classification, which uses component keyword set to facet description of the component and constructs the component vectorized model. The idea of layering is adopted to divide the components in detail. The K-means clustering algorithm based on the maximum and minimum distances is used to cluster the components, so that the problem of component matching is transformed into the calculation of the cosine similarity of component vectors. This method can narrow down the search scope and effectively improve the search efficiency.
构件检索与匹配方法研究
针对如何从庞大的组件库中快速检索到目标组件,提出了一种基于面分类的组件检索方法,该方法利用组件关键字集对组件进行面描述,构建组件矢量化模型。采用分层的思想对组件进行详细划分。采用基于最大和最小距离的K-means聚类算法对组件进行聚类,将组件匹配问题转化为计算组件向量的余弦相似度。该方法可以缩小搜索范围,有效提高搜索效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信