Battery State of Health Estimation using a Novel Regression Framework

Aritra Chaudhuri, Saptasrhi Pan, Athisiyaraj Albert, S. Basu
{"title":"Battery State of Health Estimation using a Novel Regression Framework","authors":"Aritra Chaudhuri, Saptasrhi Pan, Athisiyaraj Albert, S. Basu","doi":"10.1109/ITEC-India53713.2021.9932536","DOIUrl":null,"url":null,"abstract":"Electrochemical cells and their capacity to retain charge is fundamental in electric transportation. As cells undergoes use, they can hold lesser amount of charge as they age and degrade slowly. In this paper we present a novel machine learning/regression framework to estimate the state of health of a cell and remaining capacity at any time. We compute a partial capacity value for a standard battery dataset, and then build a machine learning based regression model.","PeriodicalId":162261,"journal":{"name":"2021 IEEE Transportation Electrification Conference (ITEC-India)","volume":"44 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Transportation Electrification Conference (ITEC-India)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITEC-India53713.2021.9932536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemical cells and their capacity to retain charge is fundamental in electric transportation. As cells undergoes use, they can hold lesser amount of charge as they age and degrade slowly. In this paper we present a novel machine learning/regression framework to estimate the state of health of a cell and remaining capacity at any time. We compute a partial capacity value for a standard battery dataset, and then build a machine learning based regression model.
基于新回归框架的电池健康状态估计
电化学电池及其保持电荷的能力是电力运输的基础。当细胞经历使用时,随着它们老化和缓慢降解,它们可以保持更少的电荷。在本文中,我们提出了一种新的机器学习/回归框架来估计细胞在任何时候的健康状态和剩余容量。我们计算了一个标准电池数据集的部分容量值,然后建立了一个基于机器学习的回归模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信