Constrained total least squares

T. Abatzoglou, J. Mendel
{"title":"Constrained total least squares","authors":"T. Abatzoglou, J. Mendel","doi":"10.1109/ICASSP.1987.1169438","DOIUrl":null,"url":null,"abstract":"The Total Least Squares (TLS) method is a generalized least square technique to solve an overdetermined system of equationsAx\\simeqb. The TLS solution differs from the usual Least Square (LS) in that it tries to compensate for arbitrary noise present in bothAandb. In certain problems the noise perturbations ofAandbare linear functions of a common \"noise source\" vector. In this case we obtain a generalization of the TLS criterion called the Constrained Total Least Squares (CTLS) method by taking into account the linear dependence of the noise terms inAandb. If the noise columns ofAandbare linearly related then the CTLS solution is obtained in terms of the largest eigenvalue and corresponding eigenvector of a certain matrix. The CTLS technique can be applied to problems like Maximum Likelihood Signal Parameter Estimation, Frequency Estimation of Sinusoids in white or colored noise by Linear Prediction and others.","PeriodicalId":140810,"journal":{"name":"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing","volume":"107 1-2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"73","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1987.1169438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 73

Abstract

The Total Least Squares (TLS) method is a generalized least square technique to solve an overdetermined system of equationsAx\simeqb. The TLS solution differs from the usual Least Square (LS) in that it tries to compensate for arbitrary noise present in bothAandb. In certain problems the noise perturbations ofAandbare linear functions of a common "noise source" vector. In this case we obtain a generalization of the TLS criterion called the Constrained Total Least Squares (CTLS) method by taking into account the linear dependence of the noise terms inAandb. If the noise columns ofAandbare linearly related then the CTLS solution is obtained in terms of the largest eigenvalue and corresponding eigenvector of a certain matrix. The CTLS technique can be applied to problems like Maximum Likelihood Signal Parameter Estimation, Frequency Estimation of Sinusoids in white or colored noise by Linear Prediction and others.
约束总最小二乘
总最小二乘法(TLS)是求解超定方程组的一种广义最小二乘方法\simeqb. TLS解决方案与通常的最小二乘(LS)的不同之处在于,它试图补偿存在于两者中的任意噪声。在某些问题中,一个公共“噪声源”向量的任意线性函数的噪声摄动。在这种情况下,我们通过考虑噪声项的线性相关性,得到了TLS准则的一种推广,称为约束总最小二乘(CTLS)方法。如果噪声列线性相关,则用某个矩阵的最大特征值和对应的特征向量得到CTLS解。CTLS技术可以应用于极大似然信号参数估计、线性预测在白噪声或有色噪声下正弦信号的频率估计等问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信