An efficient CNN model for transportation mode sensing

Ritiz Tambi, Paul Li, Jun Yang
{"title":"An efficient CNN model for transportation mode sensing","authors":"Ritiz Tambi, Paul Li, Jun Yang","doi":"10.1145/3274783.3275160","DOIUrl":null,"url":null,"abstract":"Artificial intelligence gradually finds its wider applications in mobile phones. For a better user experience, sensing users' activity or context accurately is important to enable intelligent mobile services. In this poster, we present a Convolutional Neural Network (CNN) model to detect a user's current mode of transport. Our model utilizes mobile sensor data such as accelerometer and gyroscope in the spectral domain as inputs in order to mitigate mobile phone placement and orientation factors. Encouraging experimental results show that the proposed scheme solves efficiently the problem of pose and orientation change in the transportation mode detection. In addition, our CNN model has a simplified structure, suitable for running on a mobile device with existing neural processing units (NPU) hardware capability.","PeriodicalId":156307,"journal":{"name":"Proceedings of the 16th ACM Conference on Embedded Networked Sensor Systems","volume":"373 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th ACM Conference on Embedded Networked Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3274783.3275160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Artificial intelligence gradually finds its wider applications in mobile phones. For a better user experience, sensing users' activity or context accurately is important to enable intelligent mobile services. In this poster, we present a Convolutional Neural Network (CNN) model to detect a user's current mode of transport. Our model utilizes mobile sensor data such as accelerometer and gyroscope in the spectral domain as inputs in order to mitigate mobile phone placement and orientation factors. Encouraging experimental results show that the proposed scheme solves efficiently the problem of pose and orientation change in the transportation mode detection. In addition, our CNN model has a simplified structure, suitable for running on a mobile device with existing neural processing units (NPU) hardware capability.
一种高效的交通方式感知CNN模型
人工智能逐渐在手机上得到了更广泛的应用。为了获得更好的用户体验,准确地感知用户的活动或上下文对于实现智能移动服务非常重要。在这张海报中,我们提出了一个卷积神经网络(CNN)模型来检测用户当前的运输方式。我们的模型利用频谱域的移动传感器数据,如加速度计和陀螺仪作为输入,以减轻移动电话的位置和方向因素。实验结果表明,该方法有效地解决了交通模式检测中姿态和方向变化的问题。此外,我们的CNN模型具有简化的结构,适合在具有现有神经处理单元(NPU)硬件能力的移动设备上运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信