Optimal In-Place Suffix Sorting

Zhize Li, Jian Li, Hongwei Huo
{"title":"Optimal In-Place Suffix Sorting","authors":"Zhize Li, Jian Li, Hongwei Huo","doi":"10.1109/DCC.2018.00075","DOIUrl":null,"url":null,"abstract":"Suffix array is a fundamental data structure for many applications that involve string searching and data compression. We obtain the \\emph{first} linear time in-place suffix array construction algorithm which is optimal both in time and space for read-only integer alphabets. Our algorithm settles the open problem posed by [Franceschini and Muthukrishnan, ICALP'07]. The open problem asked to design in-place algorithms in o(n\\log n) time and ultimately, in O(n) time for integer alphabets with |ς|≤ n. Our result is in fact slightly stronger since we allow |ς|=O(n). Besides, we extend it to obtain an optimal O(n\\log n) time in-place suffix sorting algorithm for read-only general alphabets (i.e., only comparisons are allowed).","PeriodicalId":137206,"journal":{"name":"2018 Data Compression Conference","volume":"46 12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2018.00075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

Suffix array is a fundamental data structure for many applications that involve string searching and data compression. We obtain the \emph{first} linear time in-place suffix array construction algorithm which is optimal both in time and space for read-only integer alphabets. Our algorithm settles the open problem posed by [Franceschini and Muthukrishnan, ICALP'07]. The open problem asked to design in-place algorithms in o(n\log n) time and ultimately, in O(n) time for integer alphabets with |ς|≤ n. Our result is in fact slightly stronger since we allow |ς|=O(n). Besides, we extend it to obtain an optimal O(n\log n) time in-place suffix sorting algorithm for read-only general alphabets (i.e., only comparisons are allowed).
最佳就地后缀排序
后缀数组是许多涉及字符串搜索和数据压缩的应用程序的基本数据结构。我们得到了\emph{第一个}对只读整数字母在时间和空间上都最优的线性时间就地后缀数组构造算法。我们的算法解决了[Franceschini and Muthukrishnan, ICALP'07]提出的开放性问题。开放问题要求在o(n \log n)时间内设计就地算法,并最终在o(n)时间内设计|ς|≤n的整数字母。我们的结果实际上稍微强一些,因为我们允许|ς|= o(n)。此外,我们对其进行了扩展,以获得只读通用字母(即只允许比较)的最优O(n \log n)时间就地后缀排序算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信