MM-Waves Modulated Gaussian Pulse Radar Breast Cancer Imaging Approach Based on Artificial Neural Network: Preliminary Assessment Study

C. Lenzi, M. Pasian, M. Bozzi, L. Perregrini, S. Caorsi
{"title":"MM-Waves Modulated Gaussian Pulse Radar Breast Cancer Imaging Approach Based on Artificial Neural Network: Preliminary Assessment Study","authors":"C. Lenzi, M. Pasian, M. Bozzi, L. Perregrini, S. Caorsi","doi":"10.1109/MMS.2017.8497140","DOIUrl":null,"url":null,"abstract":"This paper provides a preliminary assessment study of a new millimeter (mm)-waves modulated Gaussian pulse (MGP) radar imaging technique based on the use of artificial neural networks (ANNs) for breast cancer detection. Most of the proposed UWB radar imaging techniques tend to work using pulse at central frequency of few gigahertz, where this translates in a suboptimal imaging resolution. In order to improve the resolution, a mm-waves MGP centered at 30 GHz is here assessed. The measured radar signals are then processed using an ANN. The use of ANNs provides the advantage to obtain results with very low computational burden and in quasi-real-time.","PeriodicalId":152707,"journal":{"name":"2017 Mediterranean Microwave Symposium (MMS)","volume":"100 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Mediterranean Microwave Symposium (MMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMS.2017.8497140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper provides a preliminary assessment study of a new millimeter (mm)-waves modulated Gaussian pulse (MGP) radar imaging technique based on the use of artificial neural networks (ANNs) for breast cancer detection. Most of the proposed UWB radar imaging techniques tend to work using pulse at central frequency of few gigahertz, where this translates in a suboptimal imaging resolution. In order to improve the resolution, a mm-waves MGP centered at 30 GHz is here assessed. The measured radar signals are then processed using an ANN. The use of ANNs provides the advantage to obtain results with very low computational burden and in quasi-real-time.
基于人工神经网络的毫米波调制高斯脉冲雷达乳腺癌成像方法的初步评价研究
本文对一种基于人工神经网络(ann)的新型毫米波调制高斯脉冲(MGP)雷达成像技术在乳腺癌检测中的应用进行了初步评估研究。大多数提出的超宽带雷达成像技术倾向于使用几千兆赫兹中心频率的脉冲,这意味着成像分辨率不理想。为了提高分辨率,本文对以30ghz为中心的毫米波MGP进行了评估。然后使用人工神经网络对测量到的雷达信号进行处理。使用人工神经网络具有计算量低、准实时的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信