Multi-dimensional Anderson-Darling statistic based goodness-of-fit test for spectrum sensing

Sanjeev Gurugopinath, B. Samudhyatha
{"title":"Multi-dimensional Anderson-Darling statistic based goodness-of-fit test for spectrum sensing","authors":"Sanjeev Gurugopinath, B. Samudhyatha","doi":"10.1109/IWSDA.2015.7458396","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a multi-dimensional extension of the Anderson-Darling statistic based goodness-of-fit lest for spectrum sensing in a cognitive radio network with multiple nodes. A technique lo evaluate the optimal detection threshold that satisfies a constraint on the false-alarm probability is discussed. Assuming stationary and known noise statistics, we show that this detector, called as the K-sample Anderson-Darling statistic based detector, outperforms the well-known energy detector under various practically relevant primary signal models and channel fading models, through extensive Monte Carlo simulations.","PeriodicalId":371829,"journal":{"name":"2015 Seventh International Workshop on Signal Design and its Applications in Communications (IWSDA)","volume":"16 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Seventh International Workshop on Signal Design and its Applications in Communications (IWSDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWSDA.2015.7458396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we propose a multi-dimensional extension of the Anderson-Darling statistic based goodness-of-fit lest for spectrum sensing in a cognitive radio network with multiple nodes. A technique lo evaluate the optimal detection threshold that satisfies a constraint on the false-alarm probability is discussed. Assuming stationary and known noise statistics, we show that this detector, called as the K-sample Anderson-Darling statistic based detector, outperforms the well-known energy detector under various practically relevant primary signal models and channel fading models, through extensive Monte Carlo simulations.
基于多维Anderson-Darling统计量的频谱感知拟合优度检验
在本文中,我们提出了一种基于Anderson-Darling统计的多维度拟合优度方法,用于多节点认知无线电网络的频谱感知。讨论了一种评估满足虚警概率约束的最优检测阈值的方法。假设平稳且已知噪声统计量,我们通过广泛的蒙特卡罗模拟表明,这种检测器被称为基于k样本Anderson-Darling统计量的检测器,在各种实际相关的主信号模型和信道衰落模型下优于众所周知的能量检测器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信