Deep Visual Analytics (DVA): Applications, Challenges and Future Directions

Md. Rafiqul Islam, Shanjita Akter, Md Rakybuzzaman Ratan, A. Kamal, Guandong Xu
{"title":"Deep Visual Analytics (DVA): Applications, Challenges and Future Directions","authors":"Md. Rafiqul Islam, Shanjita Akter, Md Rakybuzzaman Ratan, A. Kamal, Guandong Xu","doi":"10.2991/hcis.k.210704.003","DOIUrl":null,"url":null,"abstract":"Visual interactive system (VIS) has been received significant attention for solving various complex problems. However, designing and implementing a novel VIS with the large scale of data is a challenging task. While existing studies have applied various visual analytics (VA) to analyze and visualize insightful information, deep visual analytics (DVA) have considered as a promising technique to provide input evidences and explain system results. In this study, we present several deep learning (DL) techniques for analyzing data with visualization, which summarizes the state-of-the-art review on (i) big data analysis, (ii) cognitive and perception science, (iii) customer behavior analysis, (iv) natural language processing, (v) recommended system, (vi) healthcare analysis, (vii) fintech ecosystem, and (viii) tourism management. We present open research challenges for emerging DVA in the visualization community. We also highlight some key themes from the existing literature that may help to explore for future study. Thus, our goal is to help readers and researchers in DL and VA to understand key aspects in designing VIS for analysing data.","PeriodicalId":354952,"journal":{"name":"Hum. Centric Intell. Syst.","volume":"75 24","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hum. Centric Intell. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/hcis.k.210704.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Visual interactive system (VIS) has been received significant attention for solving various complex problems. However, designing and implementing a novel VIS with the large scale of data is a challenging task. While existing studies have applied various visual analytics (VA) to analyze and visualize insightful information, deep visual analytics (DVA) have considered as a promising technique to provide input evidences and explain system results. In this study, we present several deep learning (DL) techniques for analyzing data with visualization, which summarizes the state-of-the-art review on (i) big data analysis, (ii) cognitive and perception science, (iii) customer behavior analysis, (iv) natural language processing, (v) recommended system, (vi) healthcare analysis, (vii) fintech ecosystem, and (viii) tourism management. We present open research challenges for emerging DVA in the visualization community. We also highlight some key themes from the existing literature that may help to explore for future study. Thus, our goal is to help readers and researchers in DL and VA to understand key aspects in designing VIS for analysing data.
深度视觉分析(DVA):应用、挑战和未来方向
视觉交互系统(VIS)在解决各种复杂问题方面受到广泛关注。然而,设计和实现具有大规模数据的新型VIS是一项具有挑战性的任务。虽然现有的研究已经应用了各种视觉分析(VA)来分析和可视化有洞察力的信息,但深度视觉分析(DVA)被认为是一种很有前途的技术,可以提供输入证据和解释系统结果。在本研究中,我们提出了几种用于可视化分析数据的深度学习(DL)技术,总结了以下方面的最新进展:(i)大数据分析,(ii)认知和感知科学,(iii)客户行为分析,(iv)自然语言处理,(v)推荐系统,(vi)医疗保健分析,(vii)金融科技生态系统,以及(viii)旅游管理。我们提出了可视化社区新兴DVA的开放研究挑战。我们还强调了现有文献中的一些关键主题,这些主题可能有助于探索未来的研究。因此,我们的目标是帮助DL和VA的读者和研究人员了解设计用于分析数据的VIS的关键方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信