Relational clustering based on a new robust estimator with application to Web mining

O. Nasraoui, R. Krishnapuram, A. Joshi
{"title":"Relational clustering based on a new robust estimator with application to Web mining","authors":"O. Nasraoui, R. Krishnapuram, A. Joshi","doi":"10.1109/NAFIPS.1999.781785","DOIUrl":null,"url":null,"abstract":"Mining typical user profiles and URL associations from the vast amount of access logs is an important component of Web personalization. In this paper, we define the notion of a \"\"user session\" as being a temporally compact sequence of Web accesses by a user. We also define a dissimilarity measure between two Web sessions that captures the organization of a Web site. To cluster the user sessions based on the pairwise dissimilarities, we introduce the relational fuzzy c-maximal density estimator (RFC-MDE) algorithm. RFC-MDE is robust and can deal with outliers that are typical in this application. We show real examples of the use of RFC-MDE for extraction of user profiles from log data, and and compare its performance to the standard non-Euclidean fuzzy c-means.","PeriodicalId":335957,"journal":{"name":"18th International Conference of the North American Fuzzy Information Processing Society - NAFIPS (Cat. No.99TH8397)","volume":"47 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th International Conference of the North American Fuzzy Information Processing Society - NAFIPS (Cat. No.99TH8397)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.1999.781785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57

Abstract

Mining typical user profiles and URL associations from the vast amount of access logs is an important component of Web personalization. In this paper, we define the notion of a ""user session" as being a temporally compact sequence of Web accesses by a user. We also define a dissimilarity measure between two Web sessions that captures the organization of a Web site. To cluster the user sessions based on the pairwise dissimilarities, we introduce the relational fuzzy c-maximal density estimator (RFC-MDE) algorithm. RFC-MDE is robust and can deal with outliers that are typical in this application. We show real examples of the use of RFC-MDE for extraction of user profiles from log data, and and compare its performance to the standard non-Euclidean fuzzy c-means.
基于一种新的鲁棒估计器的关系聚类在Web挖掘中的应用
从大量访问日志中挖掘典型的用户配置文件和URL关联是Web个性化的一个重要组成部分。在本文中,我们将“用户会话”的概念定义为用户访问Web的临时压缩序列。我们还定义了捕获Web站点组织的两个Web会话之间的不相似性度量。为了基于两两不相似度对用户会话进行聚类,我们引入了关系模糊c-极大密度估计(RFC-MDE)算法。RFC-MDE是健壮的,可以处理这个应用程序中典型的异常值。我们展示了使用RFC-MDE从日志数据中提取用户配置文件的真实示例,并将其性能与标准的非欧几里得模糊c-means进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信