Localization of Autonomous Robot in an Urban Area Based on SURF Feature Extraction of Images

Abu Sadat Mohammed Yasin, M. Haque, Md. Nasim Adnan, Sonia Rahnuma, Anowar Hossain, Kallol Naha, Mohammod Akbar Kabir, F. Serratosa
{"title":"Localization of Autonomous Robot in an Urban Area Based on SURF Feature Extraction of Images","authors":"Abu Sadat Mohammed Yasin, M. Haque, Md. Nasim Adnan, Sonia Rahnuma, Anowar Hossain, Kallol Naha, Mohammod Akbar Kabir, F. Serratosa","doi":"10.4018/ijtd.20201001.oa1","DOIUrl":null,"url":null,"abstract":"An autonomous robot is now an internationally discussed topic to ease the life of humans. Localization and movement are two rudimentary necessities of the autonomous robots before accomplishing any job. So, many researchers have proposed methods of localization using external tools like network connectivity, global positioning system (GPS), etc. However, if these tools are lost, either the movement will be paused, or the robot will be derailed from the actual mission. In these circumstances, the authors propose an approach to localize an autonomous robot in a specific area using the given set of images without external help. The image database has been prepared and kept in the internal memory of robot so that image matching can be done quickly. The localization method has been accomplished using three algorithms: (1) SURF, (2) ICP-BP, and (3) EMD. In the evaluation, SURF has been found better than ICP-BP and EMD in terms of accuracy and elapsed time. The authors believe that the proposed method will add value to other methods using some external tools even when those tools are unavailable.","PeriodicalId":208567,"journal":{"name":"Int. J. Technol. Diffusion","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Technol. Diffusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijtd.20201001.oa1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An autonomous robot is now an internationally discussed topic to ease the life of humans. Localization and movement are two rudimentary necessities of the autonomous robots before accomplishing any job. So, many researchers have proposed methods of localization using external tools like network connectivity, global positioning system (GPS), etc. However, if these tools are lost, either the movement will be paused, or the robot will be derailed from the actual mission. In these circumstances, the authors propose an approach to localize an autonomous robot in a specific area using the given set of images without external help. The image database has been prepared and kept in the internal memory of robot so that image matching can be done quickly. The localization method has been accomplished using three algorithms: (1) SURF, (2) ICP-BP, and (3) EMD. In the evaluation, SURF has been found better than ICP-BP and EMD in terms of accuracy and elapsed time. The authors believe that the proposed method will add value to other methods using some external tools even when those tools are unavailable.
基于图像SURF特征提取的城市自主机器人定位
自主机器人是目前国际上讨论的话题,以减轻人类的生活。定位和运动是自主机器人完成任何工作的两个基本条件。因此,许多研究者提出了利用网络连接、全球定位系统(GPS)等外部工具进行定位的方法。然而,如果这些工具丢失,要么运动将暂停,要么机器人将脱离实际任务。在这种情况下,作者提出了一种方法,在没有外部帮助的情况下,使用给定的图像集将自主机器人定位在特定区域。建立了图像数据库,并将其保存在机器人的内存中,以便快速完成图像匹配。定位方法采用了SURF、ICP-BP和EMD三种算法。在评估中,SURF在准确性和运行时间方面优于ICP-BP和EMD。作者认为,所提出的方法将为使用一些外部工具的其他方法增加价值,即使这些工具是不可用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信