Improving the performance of probabilistic neural networks

M. Musavi, K. Kalantri, W. Ahmed
{"title":"Improving the performance of probabilistic neural networks","authors":"M. Musavi, K. Kalantri, W. Ahmed","doi":"10.1109/IJCNN.1992.287147","DOIUrl":null,"url":null,"abstract":"A methodology for selection of appropriate widths or covariance matrices of the Gaussian functions in implementations of PNN (probabilistic neural network) classifiers is presented. The Gram-Schmidt orthogonalization process is employed to find these matrices. It has been shown that the proposed technique improves the generalization ability of the PNN classifiers over the standard approach. The result can be applied to other Gaussian-based classifiers such as the radial basis functions.<<ETX>>","PeriodicalId":286849,"journal":{"name":"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks","volume":"181 27","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1992.287147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

A methodology for selection of appropriate widths or covariance matrices of the Gaussian functions in implementations of PNN (probabilistic neural network) classifiers is presented. The Gram-Schmidt orthogonalization process is employed to find these matrices. It has been shown that the proposed technique improves the generalization ability of the PNN classifiers over the standard approach. The result can be applied to other Gaussian-based classifiers such as the radial basis functions.<>
改进概率神经网络的性能
提出了一种在概率神经网络分类器中选择高斯函数的适当宽度或协方差矩阵的方法。利用Gram-Schmidt正交化方法求出这些矩阵。结果表明,与标准方法相比,该方法提高了PNN分类器的泛化能力。该结果可以应用于其他基于高斯的分类器,如径向基函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信