Bergman space zero sets, modular forms, von Neumann algebras and ordered groups (edited by Pierre de la Harpe)

V. Jones
{"title":"Bergman space zero sets, modular forms, von Neumann algebras and ordered groups (edited by Pierre de la Harpe)","authors":"V. Jones","doi":"10.4171/lem/1045","DOIUrl":null,"url":null,"abstract":"$A^2_{\\alpha}$ will denote the weighted $L^2$ Bergman space. Given a subset $S$ of the open unit disc we define $\\Omega(S)$ to be the infimum of $\\{s| \\exists f \\in A^2_{s-2}, f\\neq 0, \\mbox{ having $S$ as its zero set} \\}$.By classical results on Hardy space there are sets $S$ for which $\\Omega(S)=1$. Using von Neumann dimension techniques and cusp forms we give examples of $S$ where $1<\\Omega(S)<\\infty$. By using a left order on certain Fuchsian groups we are able to calculate $\\Omega(S)$ exactly if $\\Omega (S)$ is the orbit of a Fuchsian group. This technique also allows us to derive in a new way well known results on zeros of cusp forms and indeed calculate the whole algebra of modular forms for \\pslz.","PeriodicalId":344085,"journal":{"name":"L’Enseignement Mathématique","volume":"102 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"L’Enseignement Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/lem/1045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

$A^2_{\alpha}$ will denote the weighted $L^2$ Bergman space. Given a subset $S$ of the open unit disc we define $\Omega(S)$ to be the infimum of $\{s| \exists f \in A^2_{s-2}, f\neq 0, \mbox{ having $S$ as its zero set} \}$.By classical results on Hardy space there are sets $S$ for which $\Omega(S)=1$. Using von Neumann dimension techniques and cusp forms we give examples of $S$ where $1<\Omega(S)<\infty$. By using a left order on certain Fuchsian groups we are able to calculate $\Omega(S)$ exactly if $\Omega (S)$ is the orbit of a Fuchsian group. This technique also allows us to derive in a new way well known results on zeros of cusp forms and indeed calculate the whole algebra of modular forms for \pslz.
Bergman空间零集,模形式,von Neumann代数和有序群(Pierre de la Harpe编辑)
$A^2_{\alpha}$ 表示加权$L^2$ Bergman空间。给定开单位圆盘的一个子集$S$,我们定义$\Omega(S)$为$\{s| \exists f \in A^2_{s-2}, f\neq 0, \mbox{ having $ S $ as its zero set} \}$的最小值。根据Hardy空间上的经典结果,存在集$S$,其中$\Omega(S)=1$。使用冯·诺伊曼维技术和尖端形式,我们给出了$S$的例子,其中$1<\Omega(S)<\infty$。通过在某些Fuchsian群上使用左序,我们能够精确地计算$\Omega(S)$,如果$\Omega (S)$是Fuchsian群的轨道。这种技术还允许我们以一种新的方式推导出已知的关于零尖形式的结果,并确实计算出\pslz的模形式的整个代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信