Detecting changes in content and posting time distributions in social media

Kazumi Saito, K. Ohara, M. Kimura, H. Motoda
{"title":"Detecting changes in content and posting time distributions in social media","authors":"Kazumi Saito, K. Ohara, M. Kimura, H. Motoda","doi":"10.1145/2492517.2492618","DOIUrl":null,"url":null,"abstract":"We address a problem of detecting changes in information posted to social media taking both content and posting time distributions into account. To this end, we introduce a generative model consisting of two components, one for a content distribution and the other for a timing distribution, approximating the shape of the parameter change by a series of step functions. We then propose an efficient algorithm to detect change points by maximizing the likelihood of generating the observed sequence data, which has time complexity almost proportional to the length of observed sequence (possible change points). We experimentally evaluate the method on synthetic data streams and demonstrate the importance of considering both distributions to improve the accuracy. We, further, apply our method to real scoring stream data extracted from a Japanese word-of-mouth communication site for cosmetics and show that it can detect change points and the detected parameter change patterns are interpretable through an in-depth investigation of actual reviews.","PeriodicalId":442230,"journal":{"name":"2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013)","volume":"458 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2492517.2492618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We address a problem of detecting changes in information posted to social media taking both content and posting time distributions into account. To this end, we introduce a generative model consisting of two components, one for a content distribution and the other for a timing distribution, approximating the shape of the parameter change by a series of step functions. We then propose an efficient algorithm to detect change points by maximizing the likelihood of generating the observed sequence data, which has time complexity almost proportional to the length of observed sequence (possible change points). We experimentally evaluate the method on synthetic data streams and demonstrate the importance of considering both distributions to improve the accuracy. We, further, apply our method to real scoring stream data extracted from a Japanese word-of-mouth communication site for cosmetics and show that it can detect change points and the detected parameter change patterns are interpretable through an in-depth investigation of actual reviews.
检测社交媒体内容和发布时间分布的变化
我们解决了检测发布到社交媒体上的信息变化的问题,同时考虑了内容和发布时间分布。为此,我们引入了一个由两部分组成的生成模型,一个用于内容分布,另一个用于时间分布,通过一系列阶跃函数近似参数变化的形状。然后,我们提出了一种有效的算法,通过最大化产生观测序列数据的可能性来检测变化点,该算法的时间复杂度几乎与观测序列(可能的变化点)的长度成正比。我们在合成数据流上对该方法进行了实验评估,并证明了考虑两种分布对提高准确性的重要性。我们进一步将我们的方法应用于从日本化妆品口碑传播网站中提取的真实评分流数据,并表明它可以检测到变化点,并且通过对实际评论的深入调查可以解释检测到的参数变化模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信