Zhongyuan Lai, Junhuan Zhu, Zhou Ren, Wenyu Liu, Baolan Yan
{"title":"Arbitrary Directional Edge Encoding Schemes for the Operational Rate-Distortion Optimal Shape Coding Framework","authors":"Zhongyuan Lai, Junhuan Zhu, Zhou Ren, Wenyu Liu, Baolan Yan","doi":"10.1109/DCC.2010.10","DOIUrl":null,"url":null,"abstract":"We present two edge encoding schemes, namely 8-sector scheme and 16-sector scheme, for the operational rate-distortion (ORD) optimal shape coding framework. Different from the traditional 8-direction scheme that can only encode edges with angles being an integer multiple of π/4, our proposals can encode edges with arbitrary angles. We partition the digital coordinate plane into 8 and 16 sectors, and design the corresponding differential schemes to encode the short and the long component of each vertex. Experiment results demonstrate that our two proposals can reduce a large number of encoding vertices and therefore reduce 10%~20% bits for the basic ORD optimal algorithms and 10%~30% bits for all the ORD optimal algorithms under the same distortion thresholds, respectively. Moreover, the reconstruction contours are more compact compared with those using the traditional 8-direction edge encoding scheme.","PeriodicalId":299459,"journal":{"name":"2010 Data Compression Conference","volume":"46 22","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2010.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
We present two edge encoding schemes, namely 8-sector scheme and 16-sector scheme, for the operational rate-distortion (ORD) optimal shape coding framework. Different from the traditional 8-direction scheme that can only encode edges with angles being an integer multiple of π/4, our proposals can encode edges with arbitrary angles. We partition the digital coordinate plane into 8 and 16 sectors, and design the corresponding differential schemes to encode the short and the long component of each vertex. Experiment results demonstrate that our two proposals can reduce a large number of encoding vertices and therefore reduce 10%~20% bits for the basic ORD optimal algorithms and 10%~30% bits for all the ORD optimal algorithms under the same distortion thresholds, respectively. Moreover, the reconstruction contours are more compact compared with those using the traditional 8-direction edge encoding scheme.