Material Perturbation in Rectangular Dielectric Resonator Antenna Using Neural Network

N. Sehrawat, B. Kanaujia, Anshul Agarwal
{"title":"Material Perturbation in Rectangular Dielectric Resonator Antenna Using Neural Network","authors":"N. Sehrawat, B. Kanaujia, Anshul Agarwal","doi":"10.1109/ICIERA53202.2021.9726731","DOIUrl":null,"url":null,"abstract":"The paper presents a concept of material perturbation in rectangular dielectric resonator antenna (RDRA), which can be helpful for gain and bandwidth enhancement over original DRA. Material perturbation provides a wide tuning range, improved degree of freedom, and hence more flexibility in designing application-specific antennas. The perturbation parameters are optimized using artificial neural networks for a given design frequency. The concept of Perturbation was previously used as layered and stacked DRAs. Further, material perturbation and wall perturbation can be combined for obtaining polarization diversity in DRAs.","PeriodicalId":220461,"journal":{"name":"2021 International Conference on Industrial Electronics Research and Applications (ICIERA)","volume":"433 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Industrial Electronics Research and Applications (ICIERA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIERA53202.2021.9726731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The paper presents a concept of material perturbation in rectangular dielectric resonator antenna (RDRA), which can be helpful for gain and bandwidth enhancement over original DRA. Material perturbation provides a wide tuning range, improved degree of freedom, and hence more flexibility in designing application-specific antennas. The perturbation parameters are optimized using artificial neural networks for a given design frequency. The concept of Perturbation was previously used as layered and stacked DRAs. Further, material perturbation and wall perturbation can be combined for obtaining polarization diversity in DRAs.
基于神经网络的矩形介质谐振器天线材料摄动
本文提出了矩形介质谐振器天线(RDRA)中材料摄动的概念,该概念有助于提高矩形介质谐振器天线的增益和带宽。材料扰动提供了更宽的调谐范围,提高了自由度,因此在设计特定应用的天线时更灵活。在给定的设计频率下,利用人工神经网络对扰动参数进行优化。微扰的概念以前被用作分层和堆叠的DRAs。此外,材料摄动和壁摄动可以结合起来获得dra中的极化分集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信