Y. Wong, W. Kang, J. Davidson, W. Hofmeister, S. Wei, J.H. Huang
{"title":"Transistor characteristics of thermal CVD carbon nanotubes field emission triode","authors":"Y. Wong, W. Kang, J. Davidson, W. Hofmeister, S. Wei, J.H. Huang","doi":"10.1109/IVNC.2004.1355016","DOIUrl":null,"url":null,"abstract":"In this paper, the study of thermal CVD grown CNT field emitters in a triode amplifier configuration is reported. The DC characteristics of the CNT triode are investigated, including I/sub a/ vs. V/sub a/ for different V/sub g/. Moreover, DC parameters such as transconductance, amplification factor and anode resistance of the triode amplifier are determined. It was shown that a higher amplification factor can be achieved with optimum gate-anode-cathode spacing such that the cathode is effectively shielded from the anode by the gate but the anode still collects all electrons emitted from the cathode. High emission current at low gate voltage is key to achieving high transconductance. This can be obtained by optimum configuration of high-density CNTs array in a triode structure with a common gate.","PeriodicalId":137345,"journal":{"name":"Technical Digest of the 17th International Vacuum Nanoelectronics Conference (IEEE Cat. No.04TH8737)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technical Digest of the 17th International Vacuum Nanoelectronics Conference (IEEE Cat. No.04TH8737)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVNC.2004.1355016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, the study of thermal CVD grown CNT field emitters in a triode amplifier configuration is reported. The DC characteristics of the CNT triode are investigated, including I/sub a/ vs. V/sub a/ for different V/sub g/. Moreover, DC parameters such as transconductance, amplification factor and anode resistance of the triode amplifier are determined. It was shown that a higher amplification factor can be achieved with optimum gate-anode-cathode spacing such that the cathode is effectively shielded from the anode by the gate but the anode still collects all electrons emitted from the cathode. High emission current at low gate voltage is key to achieving high transconductance. This can be obtained by optimum configuration of high-density CNTs array in a triode structure with a common gate.