Partition-Crossing Hypergraphs

Csilla Bujtás, Z. Tuza
{"title":"Partition-Crossing Hypergraphs","authors":"Csilla Bujtás, Z. Tuza","doi":"10.14232/actacyb.23.3.2018.6","DOIUrl":null,"url":null,"abstract":"For a finite set $X$, we say that a set $H\\subseteq X$ crosses a partition ${\\cal P}=(X_1,\\dots,X_k)$ of $X$ if $H$ intersects $\\min (|H|,k)$ partition classes. If $|H|\\geq k$, this means that $H$ meets all classes $X_i$, whilst for $|H|\\leq k$ the elements of the crossing set $H$ belong to mutually distinct classes. A set system ${\\cal H}$ crosses ${\\cal P}$, if so does some $H\\in {\\cal H}$. The minimum number of $r$-element subsets, such that every $k$-partition of an $n$-element set $X$ is crossed by at least one of them, is denoted by $f(n,k,r)$. \nThe problem of determining these minimum values for $k=r$ was raised and studied by several authors, first by Sterboul in 1973 [Proc. Colloq. Math. Soc. J. Bolyai, Vol. 10, Keszthely 1973, North-Holland/American Elsevier, 1975, pp. 1387--1404]. The present authors determined asymptotically tight estimates on $f(n,k,k)$ for every fixed $k$ as $n\\to \\infty$ [Graphs Combin., 25 (2009), 807--816]. Here we consider the more general problem for two parameters $k$ and $r$, and establish lower and upper bounds for $f(n,k,r)$. For various combinations of the three values $n,k,r$ we obtain asymptotically tight estimates, and also point out close connections of the function $f(n,k,r)$ to Tur\\'an-type extremal problems on graphs and hypergraphs, or to balanced incomplete block designs.","PeriodicalId":187125,"journal":{"name":"Acta Cybern.","volume":"110 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Cybern.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14232/actacyb.23.3.2018.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For a finite set $X$, we say that a set $H\subseteq X$ crosses a partition ${\cal P}=(X_1,\dots,X_k)$ of $X$ if $H$ intersects $\min (|H|,k)$ partition classes. If $|H|\geq k$, this means that $H$ meets all classes $X_i$, whilst for $|H|\leq k$ the elements of the crossing set $H$ belong to mutually distinct classes. A set system ${\cal H}$ crosses ${\cal P}$, if so does some $H\in {\cal H}$. The minimum number of $r$-element subsets, such that every $k$-partition of an $n$-element set $X$ is crossed by at least one of them, is denoted by $f(n,k,r)$. The problem of determining these minimum values for $k=r$ was raised and studied by several authors, first by Sterboul in 1973 [Proc. Colloq. Math. Soc. J. Bolyai, Vol. 10, Keszthely 1973, North-Holland/American Elsevier, 1975, pp. 1387--1404]. The present authors determined asymptotically tight estimates on $f(n,k,k)$ for every fixed $k$ as $n\to \infty$ [Graphs Combin., 25 (2009), 807--816]. Here we consider the more general problem for two parameters $k$ and $r$, and establish lower and upper bounds for $f(n,k,r)$. For various combinations of the three values $n,k,r$ we obtain asymptotically tight estimates, and also point out close connections of the function $f(n,k,r)$ to Tur\'an-type extremal problems on graphs and hypergraphs, or to balanced incomplete block designs.
Partition-Crossing超图
对于有限集$X$,如果$H$与$\min (|H|,k)$分区类相交,我们说集合$H\subseteq X$穿过$X$的分区${\cal P}=(X_1,\dots,X_k)$。如果是$|H|\geq k$,这意味着$H$满足所有类$X_i$,而对于$|H|\leq k$,交叉集$H$的元素属于相互不同的类。一个集合系统${\cal H}$与${\cal P}$相交,如果有的话,也会与$H\in {\cal H}$相交。使$n$ -元素集$X$的每个$k$ -分区至少有一个交叉的$r$ -元素子集的最小数量用$f(n,k,r)$表示。确定$k=r$的这些最小值的问题是由几个作者提出和研究的,首先是由Sterboul在1973年[Proc. Colloq. Math]。Soc。J. Bolyai,卷10,Keszthely 1973, North-Holland/American Elsevier, 1975, pp. 1387—1404]。对于每个固定的$k$,本文确定了$f(n,k,k)$上的渐近紧估计为$n\to \infty$[图组合]。生态学报,25(2009),807—816]。这里我们考虑两个参数$k$和$r$的更一般的问题,并建立$f(n,k,r)$的下界和上界。对于这三个值$n,k,r$的各种组合,我们得到了渐近紧估计,并指出了函数$f(n,k,r)$与Turán-type图和超图上的极值问题或平衡不完全块设计的密切联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信