Android apps and user feedback: a dataset for software evolution and quality improvement

Giovanni Grano, Andrea Di Sorbo, F. Mercaldo, C. A. Visaggio, G. Canfora, Sebastiano Panichella
{"title":"Android apps and user feedback: a dataset for software evolution and quality improvement","authors":"Giovanni Grano, Andrea Di Sorbo, F. Mercaldo, C. A. Visaggio, G. Canfora, Sebastiano Panichella","doi":"10.1145/3121264.3121266","DOIUrl":null,"url":null,"abstract":"Nowadays, Android represents the most popular mobile platform with a market share of around 80%. Previous research showed that data contained in user reviews and code change history of mobile apps represent a rich source of information for reducing software maintenance and development effort, increasing customers' satisfaction. Stemming from this observation, we present in this paper a large dataset of Android applications belonging to 23 different apps categories, which provides an overview of the types of feedback users report on the apps and documents the evolution of the related code metrics. The dataset contains about 395 applications of the F-Droid repository, including around 600 versions, 280,000 user reviews and more than 450,000 user feedback (extracted with specific text mining approaches). Furthermore, for each app version in our dataset, we employed the Paprika tool and developed several Python scripts to detect 8 different code smells and compute 22 code quality indicators. The paper discusses the potential usefulness of the dataset for future research in the field.","PeriodicalId":179461,"journal":{"name":"Proceedings of the 2nd ACM SIGSOFT International Workshop on App Market Analytics","volume":"43 51","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd ACM SIGSOFT International Workshop on App Market Analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3121264.3121266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 58

Abstract

Nowadays, Android represents the most popular mobile platform with a market share of around 80%. Previous research showed that data contained in user reviews and code change history of mobile apps represent a rich source of information for reducing software maintenance and development effort, increasing customers' satisfaction. Stemming from this observation, we present in this paper a large dataset of Android applications belonging to 23 different apps categories, which provides an overview of the types of feedback users report on the apps and documents the evolution of the related code metrics. The dataset contains about 395 applications of the F-Droid repository, including around 600 versions, 280,000 user reviews and more than 450,000 user feedback (extracted with specific text mining approaches). Furthermore, for each app version in our dataset, we employed the Paprika tool and developed several Python scripts to detect 8 different code smells and compute 22 code quality indicators. The paper discusses the potential usefulness of the dataset for future research in the field.
Android应用程序和用户反馈:软件进化和质量改进的数据集
目前,Android是最受欢迎的移动平台,市场份额约为80%。先前的研究表明,用户评论和移动应用程序代码变更历史中包含的数据代表了丰富的信息来源,可以减少软件维护和开发工作,提高客户满意度。基于这一观察,我们在本文中呈现了属于23个不同应用类别的Android应用的大型数据集,它提供了用户对应用报告的反馈类型的概述,并记录了相关代码指标的演变。该数据集包含大约395个F-Droid存储库的应用程序,包括大约600个版本,280,000个用户评论和超过450,000个用户反馈(通过特定的文本挖掘方法提取)。此外,对于我们数据集中的每个应用版本,我们使用了Paprika工具并开发了几个Python脚本来检测8种不同的代码气味并计算22个代码质量指标。本文讨论了该数据集对该领域未来研究的潜在有用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信