Maximum cross-entropy generalized series reconstruction

C. P. Hess, Zhi-Pei Liang, Andrew G. Webb, P. Lauterbur
{"title":"Maximum cross-entropy generalized series reconstruction","authors":"C. P. Hess, Zhi-Pei Liang, Andrew G. Webb, P. Lauterbur","doi":"10.1109/ICIP.1998.723398","DOIUrl":null,"url":null,"abstract":"This paper addresses the classical image reconstruction problem from limited Fourier data. Here, we assume that a high-resolution reference which provides an initial estimate of the desired image is available. A new algorithm is described which represents the desired image using a family of basis functions derived from the reference image. The selection of the most efficient basis function set from this family is guided by the principle of maximum cross-entropy. Simulation and experimental results have shown that the algorithm can achieve high resolution with a small number of data points and can also account for relative rotation and translation between the reference and the measured data.","PeriodicalId":220168,"journal":{"name":"Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269)","volume":"875 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.1998.723398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This paper addresses the classical image reconstruction problem from limited Fourier data. Here, we assume that a high-resolution reference which provides an initial estimate of the desired image is available. A new algorithm is described which represents the desired image using a family of basis functions derived from the reference image. The selection of the most efficient basis function set from this family is guided by the principle of maximum cross-entropy. Simulation and experimental results have shown that the algorithm can achieve high resolution with a small number of data points and can also account for relative rotation and translation between the reference and the measured data.
最大交叉熵广义序列重构
本文研究了基于有限傅里叶数据的经典图像重建问题。在这里,我们假设一个高分辨率的参考,它提供了所需图像的初始估计是可用的。描述了一种新的算法,该算法使用从参考图像导出的一组基函数来表示期望图像。在最大交叉熵原则的指导下,从该族中选择最有效的基函数集。仿真和实验结果表明,该算法可以在少量数据点的情况下实现高分辨率,并且可以考虑参考点与测量数据之间的相对旋转和平移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信