{"title":"How to Build Simple Models of PEM Fuel Cells for Fast Computation","authors":"J. Deseure","doi":"10.5772/intechopen.89958","DOIUrl":null,"url":null,"abstract":"Hydrogen is one of the leading candidates in the search for an alternative to fossil hydrocarbon fuels. The spread of these technologies requires a real-time control of generator performances. Artificial intelligence (AI) and mathematic tools can make smarter the smart grid. The electrochemical modeling can be coupled successfully with artificial intelligent approach, if these models can be quickly computed with a large numerical stability. This chapter shows a methodology to build this kind of modeling work. Thanks to a simplified but physically reasonable model of PEM fuel cell, we will show that the reactant access (oxygen) or water management (a product of the reaction) and the reaction rate can be easily described with low computing time consuming. In addition, the artificial neural network could be trained with a reduced amount of data generated by these cell models.","PeriodicalId":173761,"journal":{"name":"Thermodynamics and Energy Engineering","volume":"96 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermodynamics and Energy Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.89958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrogen is one of the leading candidates in the search for an alternative to fossil hydrocarbon fuels. The spread of these technologies requires a real-time control of generator performances. Artificial intelligence (AI) and mathematic tools can make smarter the smart grid. The electrochemical modeling can be coupled successfully with artificial intelligent approach, if these models can be quickly computed with a large numerical stability. This chapter shows a methodology to build this kind of modeling work. Thanks to a simplified but physically reasonable model of PEM fuel cell, we will show that the reactant access (oxygen) or water management (a product of the reaction) and the reaction rate can be easily described with low computing time consuming. In addition, the artificial neural network could be trained with a reduced amount of data generated by these cell models.