Hierarchical lossless image coding using CNN predictors considering prediction error distribution

Kazuki Nakashima, Ryo Nakazawa, Hideharu Toda, H. Aomori, T. Otake, I. Matsuda, S. Itoh
{"title":"Hierarchical lossless image coding using CNN predictors considering prediction error distribution","authors":"Kazuki Nakashima, Ryo Nakazawa, Hideharu Toda, H. Aomori, T. Otake, I. Matsuda, S. Itoh","doi":"10.1117/12.2691664","DOIUrl":null,"url":null,"abstract":"We have researched a hierarchical lossless encoding method using cellular neural networks (CNN) as predictors. In our method, which belongs to the hierarchical lossless coding method, the prediction accuracy is improved by adaptively using different CNN predictors depending on the direction of the image edges. The prediction error obtained by CNN prediction is encoded by adaptive arithmetic coding using multiple probabilistic models based on the context modeling. In previous research,1 a new approach is introduced in which the prediction errors of each predictor are encoded separately by arithmetic coding. Although this method improves the performance of encoding prediction errors, increasing side information became an issue. Therefore, to reduce the side information of the arithmetic coders, we propose a grouping algorithm that groups the prediction errors corresponding to each predictor based on the utilization of the predictors.","PeriodicalId":295011,"journal":{"name":"International Conference on Quality Control by Artificial Vision","volume":"97 11","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Quality Control by Artificial Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2691664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We have researched a hierarchical lossless encoding method using cellular neural networks (CNN) as predictors. In our method, which belongs to the hierarchical lossless coding method, the prediction accuracy is improved by adaptively using different CNN predictors depending on the direction of the image edges. The prediction error obtained by CNN prediction is encoded by adaptive arithmetic coding using multiple probabilistic models based on the context modeling. In previous research,1 a new approach is introduced in which the prediction errors of each predictor are encoded separately by arithmetic coding. Although this method improves the performance of encoding prediction errors, increasing side information became an issue. Therefore, to reduce the side information of the arithmetic coders, we propose a grouping algorithm that groups the prediction errors corresponding to each predictor based on the utilization of the predictors.
考虑预测误差分布的CNN预测器分层无损图像编码
研究了一种利用细胞神经网络(CNN)作为预测器的分层无损编码方法。该方法属于分层无损编码方法,通过根据图像边缘方向自适应地使用不同的CNN预测器来提高预测精度。CNN预测得到的预测误差采用基于上下文建模的多概率模型自适应算法编码进行编码。在以往的研究中,1提出了一种新的方法,将每个预测器的预测误差分别用算术编码进行编码。虽然该方法提高了编码预测误差的性能,但增加侧信息成为一个问题。因此,为了减少算术编码器的侧信息,我们提出了一种分组算法,该算法根据预测器的利用率对每个预测器对应的预测误差进行分组。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信