On the prediction of electric vehicles energy demand by using vehicular networks

Vicente Torres-Sanz, Julio A. Sanguesa, Piedad Garrido, F. Martinez, C. Calafate, J. Márquez-Barja
{"title":"On the prediction of electric vehicles energy demand by using vehicular networks","authors":"Vicente Torres-Sanz, Julio A. Sanguesa, Piedad Garrido, F. Martinez, C. Calafate, J. Márquez-Barja","doi":"10.1109/WD.2017.7918143","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a comprehensive architecture based on vehicular communication technologies, considering vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications. In addition, we present a study about EVs charging load. Our proposal addresses three main issues: (i) knowledge of the number of vehicles that are going to recharge their batteries at a particular point and instant, (ii) knowledge of the available charging points, and (iii) predicting the electricity demand. Results show that our system is able to predict the electricity requirements of the EVs that are expected to recharge their batteries up to 180 minutes in advance.","PeriodicalId":179998,"journal":{"name":"2017 Wireless Days","volume":"275 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Wireless Days","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WD.2017.7918143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we propose a comprehensive architecture based on vehicular communication technologies, considering vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications. In addition, we present a study about EVs charging load. Our proposal addresses three main issues: (i) knowledge of the number of vehicles that are going to recharge their batteries at a particular point and instant, (ii) knowledge of the available charging points, and (iii) predicting the electricity demand. Results show that our system is able to predict the electricity requirements of the EVs that are expected to recharge their batteries up to 180 minutes in advance.
基于车联网的电动汽车能源需求预测研究
在本文中,我们提出了一种基于车辆通信技术的综合架构,考虑了车辆对车辆(V2V)和车辆对基础设施(V2I)通信。此外,我们还对电动汽车充电负荷进行了研究。我们的建议解决了三个主要问题:(i)了解在特定时间点充电的车辆数量,(ii)了解可用的充电点,以及(iii)预测电力需求。结果表明,我们的系统能够提前180分钟预测预计充电的电动汽车的电力需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信