{"title":"Using Bayesian Networks for Risk Assessment in Healthcare System","authors":"B. Zoullouti, M. Amghar, S. Nawal","doi":"10.5772/INTECHOPEN.80464","DOIUrl":null,"url":null,"abstract":"To ensure patient safety, the healthcare service must be of a high quality, safe and effective. This work aims to propose integrated approaches to risk management for a hospital system. To improve patient ’ s safety, we should develop methods where different aspects of risk and type of information are taken into consideration. The first approach is designed for a context where data about risk events are available. It uses Bayesian networks for quantitative risk analysis in the hospital. Bayesian networks provide a framework for presenting causal relationships and enable probabilistic inference among a set of variables. The methodology is used to analyze the patient ’ s safety risk in the operating room, which is a high risk area for adverse event. The second approach uses the fuzzy Bayesian network to model and analyze risk. Fuzzy logic allows using the expert ’ s opinions when quantitative data are lacking and only qualitative or vague statements can be made. This approach provides an actionable model that accurately supports human cognition using linguistic variables. A case study of the patient ’ s safety risk in the operating room is used to illustrate the application of the proposed method. s","PeriodicalId":317166,"journal":{"name":"Bayesian Networks - Advances and Novel Applications","volume":"169 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bayesian Networks - Advances and Novel Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.80464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
To ensure patient safety, the healthcare service must be of a high quality, safe and effective. This work aims to propose integrated approaches to risk management for a hospital system. To improve patient ’ s safety, we should develop methods where different aspects of risk and type of information are taken into consideration. The first approach is designed for a context where data about risk events are available. It uses Bayesian networks for quantitative risk analysis in the hospital. Bayesian networks provide a framework for presenting causal relationships and enable probabilistic inference among a set of variables. The methodology is used to analyze the patient ’ s safety risk in the operating room, which is a high risk area for adverse event. The second approach uses the fuzzy Bayesian network to model and analyze risk. Fuzzy logic allows using the expert ’ s opinions when quantitative data are lacking and only qualitative or vague statements can be made. This approach provides an actionable model that accurately supports human cognition using linguistic variables. A case study of the patient ’ s safety risk in the operating room is used to illustrate the application of the proposed method. s