A Memory Model for Scientific Algorithms on Graphics Processors

N. Govindaraju, S. Larsen, J. Gray, Dinesh Manocha
{"title":"A Memory Model for Scientific Algorithms on Graphics Processors","authors":"N. Govindaraju, S. Larsen, J. Gray, Dinesh Manocha","doi":"10.1145/1188455.1188549","DOIUrl":null,"url":null,"abstract":"We present a memory model to analyze and improve the performance of scientific algorithms on graphics processing units (GPUs). Our memory model is based on texturing hardware, which uses a 2D block-based array representation to perform the underlying computations. We incorporate many characteristics of GPU architectures including smaller cache sizes, 2D block representations, and use the 3C's model to analyze the cache misses. Moreover, we present techniques to improve the performance of nested loops on GPUs. In order to demonstrate the effectiveness of our model, we highlight its performance on three memory-intensive scientific applications - sorting, fast Fourier transform and dense matrix-multiplication. In practice, our cache-efficient algorithms for these applications are able to achieve memory throughput of 30-50 GB/s on a NVIDIA 7900 GTX GPU. We also compare our results with prior GPU-based and CPU-based implementations on high-end processors. In practice, we are able to achieve 2-5x performance improvement","PeriodicalId":333909,"journal":{"name":"ACM/IEEE SC 2006 Conference (SC'06)","volume":"92 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"211","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM/IEEE SC 2006 Conference (SC'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1188455.1188549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 211

Abstract

We present a memory model to analyze and improve the performance of scientific algorithms on graphics processing units (GPUs). Our memory model is based on texturing hardware, which uses a 2D block-based array representation to perform the underlying computations. We incorporate many characteristics of GPU architectures including smaller cache sizes, 2D block representations, and use the 3C's model to analyze the cache misses. Moreover, we present techniques to improve the performance of nested loops on GPUs. In order to demonstrate the effectiveness of our model, we highlight its performance on three memory-intensive scientific applications - sorting, fast Fourier transform and dense matrix-multiplication. In practice, our cache-efficient algorithms for these applications are able to achieve memory throughput of 30-50 GB/s on a NVIDIA 7900 GTX GPU. We also compare our results with prior GPU-based and CPU-based implementations on high-end processors. In practice, we are able to achieve 2-5x performance improvement
图形处理器上科学算法的内存模型
我们提出了一个内存模型来分析和提高图形处理单元(gpu)上科学算法的性能。我们的内存模型基于纹理硬件,它使用基于2D块的数组表示来执行底层计算。我们结合了GPU架构的许多特征,包括更小的缓存大小,2D块表示,并使用3C的模型来分析缓存缺失。此外,我们提出了提高gpu上嵌套循环性能的技术。为了证明我们的模型的有效性,我们重点介绍了它在三种内存密集型科学应用中的性能-排序,快速傅里叶变换和密集矩阵乘法。在实践中,我们针对这些应用的缓存高效算法能够在NVIDIA 7900 GTX GPU上实现30-50 GB/s的内存吞吐量。我们还将我们的结果与先前基于gpu和基于cpu的高端处理器实现进行了比较。在实践中,我们能够实现2-5倍的性能改进
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信