Graph-Based Tracking with Uncertain ID Measurement Associations

S. Coraluppi, C. Carthel, A. Willsky
{"title":"Graph-Based Tracking with Uncertain ID Measurement Associations","authors":"S. Coraluppi, C. Carthel, A. Willsky","doi":"10.23919/fusion43075.2019.9011377","DOIUrl":null,"url":null,"abstract":"While multiple-hypothesis tracking is a leading paradigm for multi-sensor multi-target tracking, it is not effective in settings with disparate sensors that include high-rate kinematic data and low-rate identity data. Recent work has led to an effective graph-based approach to this challenge. This paper introduces two further advances: a generalization that allows for multiple (indistinguishable) objects of each type, and a scalable, time-based framework for hypothesis resolution. We illustrate promising performance results for multi-target track maintenance scenarios.","PeriodicalId":348881,"journal":{"name":"2019 22th International Conference on Information Fusion (FUSION)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 22th International Conference on Information Fusion (FUSION)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/fusion43075.2019.9011377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

While multiple-hypothesis tracking is a leading paradigm for multi-sensor multi-target tracking, it is not effective in settings with disparate sensors that include high-rate kinematic data and low-rate identity data. Recent work has led to an effective graph-based approach to this challenge. This paper introduces two further advances: a generalization that allows for multiple (indistinguishable) objects of each type, and a scalable, time-based framework for hypothesis resolution. We illustrate promising performance results for multi-target track maintenance scenarios.
不确定ID测量关联的基于图的跟踪
虽然多假设跟踪是多传感器多目标跟踪的主要范例,但它在包含高速率运动数据和低速率身份数据的不同传感器的设置中并不有效。最近的工作已经产生了一种有效的基于图形的方法来应对这一挑战。本文介绍了两项进一步的进展:一种允许每种类型的多个(不可区分)对象的泛化,以及一种可扩展的、基于时间的假设分辨率框架。我们举例说明了多目标轨道维护场景的良好性能结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信