A Random Key based Estimation of Distribution Algorithm for the Permutation Flowshop Scheduling Problem

M. Ayodele, J. Mccall, Olivier Regnier-Coudert, Liam Bowie
{"title":"A Random Key based Estimation of Distribution Algorithm for the Permutation Flowshop Scheduling Problem","authors":"M. Ayodele, J. Mccall, Olivier Regnier-Coudert, Liam Bowie","doi":"10.1109/CEC.2017.7969591","DOIUrl":null,"url":null,"abstract":"Random Key (RK) is an alternative representation for permutation problems that enables application of techniques generally used for continuous optimisation. Although the benefit of RKs to permutation optimisation has been shown, its use within Estimation of Distribution Algorithms (EDAs) has been a challenge. Recent research proposing a RK-based EDA (RK-EDA) has shown that RKs can produce competitive results with state of the art algorithms. Following promising results on the Permutation Flowshop Scheduling Problem, this paper presents an analysis of RK-EDA for optimising the total flow time. Experiments show that RK-EDA outperforms other permutation-based EDAs on instances of large dimensions. The difference in performance between RK-EDA and the state of the art algorithms also decreases when the problem difficulty increases.","PeriodicalId":335123,"journal":{"name":"2017 IEEE Congress on Evolutionary Computation (CEC)","volume":"157 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2017.7969591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Random Key (RK) is an alternative representation for permutation problems that enables application of techniques generally used for continuous optimisation. Although the benefit of RKs to permutation optimisation has been shown, its use within Estimation of Distribution Algorithms (EDAs) has been a challenge. Recent research proposing a RK-based EDA (RK-EDA) has shown that RKs can produce competitive results with state of the art algorithms. Following promising results on the Permutation Flowshop Scheduling Problem, this paper presents an analysis of RK-EDA for optimising the total flow time. Experiments show that RK-EDA outperforms other permutation-based EDAs on instances of large dimensions. The difference in performance between RK-EDA and the state of the art algorithms also decreases when the problem difficulty increases.
基于随机密钥估计的置换流水车间调度算法
随机密钥(RK)是排列问题的另一种表示,它使应用通常用于连续优化的技术成为可能。虽然rk对排列优化的好处已经被证明,但它在分布估计算法(EDAs)中的使用一直是一个挑战。最近提出基于rk的EDA (RK-EDA)的研究表明,rk可以与最先进的算法产生具有竞争力的结果。在置换流水车间调度问题上取得了令人满意的结果之后,本文提出了RK-EDA优化总流时间的分析方法。实验表明,RK-EDA在大维度的实例上优于其他基于排列的eda。当问题难度增加时,RK-EDA与最先进算法之间的性能差异也会减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信