{"title":"End-to-end performance modeling of distributed GPU applications","authors":"Jaemin Choi, D. Richards, L. Kalé, A. Bhatele","doi":"10.1145/3392717.3392737","DOIUrl":null,"url":null,"abstract":"With the growing number of GPU-based supercomputing platforms and GPU-enabled applications, the ability to accurately model the performance of such applications is becoming increasingly important. Most current performance models for GPU-enabled applications are limited to single node performance. In this work, we propose a methodology for end-to-end performance modeling of distributed GPU applications. Our work strives to create performance models that are both accurate and easily applicable to any distributed GPU application. We combine trace-driven simulation of MPI communication using the TraceR-CODES framework with a profiling-based roofline model for GPU kernels. We make substantial modifications to these models to capture the complex effects of both on-node and off-node networks in today's multi-GPU supercomputers. We validate our model against empirical data from GPU platforms and also vary tunable parameters of our model to observe how they might affect application performance.","PeriodicalId":346687,"journal":{"name":"Proceedings of the 34th ACM International Conference on Supercomputing","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 34th ACM International Conference on Supercomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3392717.3392737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
With the growing number of GPU-based supercomputing platforms and GPU-enabled applications, the ability to accurately model the performance of such applications is becoming increasingly important. Most current performance models for GPU-enabled applications are limited to single node performance. In this work, we propose a methodology for end-to-end performance modeling of distributed GPU applications. Our work strives to create performance models that are both accurate and easily applicable to any distributed GPU application. We combine trace-driven simulation of MPI communication using the TraceR-CODES framework with a profiling-based roofline model for GPU kernels. We make substantial modifications to these models to capture the complex effects of both on-node and off-node networks in today's multi-GPU supercomputers. We validate our model against empirical data from GPU platforms and also vary tunable parameters of our model to observe how they might affect application performance.