{"title":"Multiscale Analysis of Trabecular Bone","authors":"Frederic Bouyge, I. Jasiuk","doi":"10.1115/imece2000-1194","DOIUrl":null,"url":null,"abstract":"\n Bone has a complex hierarchical structure. We study trabecular bone as a multi-scale material. In particular, we distinguish the following scales: nanostructural (collagen fibrils and apatite crystals), microscale (single laminae and laminated structure), mesoscale (random network of struts), and macroscale. We first present experimental observations and an overview of existing theoretical models of bone. Then, we construct a hierarchical model to predict elastic properties of trabecular bone.","PeriodicalId":245159,"journal":{"name":"Recent Trends in Constitutive Modeling of Advanced Materials","volume":"10 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Trends in Constitutive Modeling of Advanced Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2000-1194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Bone has a complex hierarchical structure. We study trabecular bone as a multi-scale material. In particular, we distinguish the following scales: nanostructural (collagen fibrils and apatite crystals), microscale (single laminae and laminated structure), mesoscale (random network of struts), and macroscale. We first present experimental observations and an overview of existing theoretical models of bone. Then, we construct a hierarchical model to predict elastic properties of trabecular bone.