Combining Neural Networks and Fuzzy Systems for Human Behavior Understanding

G. Acampora, P. Foggia, Alessia Saggese, M. Vento
{"title":"Combining Neural Networks and Fuzzy Systems for Human Behavior Understanding","authors":"G. Acampora, P. Foggia, Alessia Saggese, M. Vento","doi":"10.1109/AVSS.2012.25","DOIUrl":null,"url":null,"abstract":"The psychological overcharge issue related to human inadequacy to maintain a constant level of attention in simultaneously monitoring multiple visual information sources makes necessary to develop enhanced video surveillance systems that automatically understand human behaviors and identify dangerous situations. This paper introduces a semantic human behavioral analysis (HBA) system based on a neuro-fuzzy approach that, independently from the specific application, translates tracking kinematic data into a collection of semantic labels characterizing the behavior of different actors in a scene in order to appropriately classify the current situation. Different from other HBA approaches, the proposed system shows high level of scalability, robustness and tolerance for tracking imprecision and, for this reason, it could represent a valid choice for improving the performance of current systems.","PeriodicalId":275325,"journal":{"name":"2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance","volume":"504 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2012.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

The psychological overcharge issue related to human inadequacy to maintain a constant level of attention in simultaneously monitoring multiple visual information sources makes necessary to develop enhanced video surveillance systems that automatically understand human behaviors and identify dangerous situations. This paper introduces a semantic human behavioral analysis (HBA) system based on a neuro-fuzzy approach that, independently from the specific application, translates tracking kinematic data into a collection of semantic labels characterizing the behavior of different actors in a scene in order to appropriately classify the current situation. Different from other HBA approaches, the proposed system shows high level of scalability, robustness and tolerance for tracking imprecision and, for this reason, it could represent a valid choice for improving the performance of current systems.
结合神经网络和模糊系统的人类行为理解
由于人在同时监测多个视觉信息源时无法保持持续的注意力,因此有必要开发能够自动了解人的行为和识别危险情况的增强的视频监视系统。本文介绍了一种基于神经模糊方法的语义人类行为分析(HBA)系统,该系统独立于具体应用,将跟踪运动学数据转换为表征场景中不同参与者行为的语义标签集合,以便对当前情况进行适当分类。与其他HBA方法不同,所提出的系统显示出高度的可伸缩性、健壮性和对跟踪不精确的容忍度,因此,它可以作为改进当前系统性能的有效选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信