Curvature on a Principal Bundle

L. Tu
{"title":"Curvature on a Principal Bundle","authors":"L. Tu","doi":"10.2307/j.ctvrdf1gz.23","DOIUrl":null,"url":null,"abstract":"This chapter examines curvature on a principal bundle. The curvature of a connection on a principal G-bundle is a g-valued 2-form that measures, in some sense, the deviation of the connection from the Maurer-Cartan connection on a product bundle. The Maurer-Cartan form Θ‎ on a Lie group G satisfies the Maurer-Cartan equation. Let M be a smooth manifold. The chapter then pulls the Maurer-Cartan equation back and uses Proposition 14.3 to get the Maurer-Cartan connection. It also considers the second structural equation; the first structural equation is discussed in a previous chapter. Finally, the chapter derives some properties of the curvature form.","PeriodicalId":272846,"journal":{"name":"Introductory Lectures on Equivariant Cohomology","volume":"148 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Introductory Lectures on Equivariant Cohomology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctvrdf1gz.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This chapter examines curvature on a principal bundle. The curvature of a connection on a principal G-bundle is a g-valued 2-form that measures, in some sense, the deviation of the connection from the Maurer-Cartan connection on a product bundle. The Maurer-Cartan form Θ‎ on a Lie group G satisfies the Maurer-Cartan equation. Let M be a smooth manifold. The chapter then pulls the Maurer-Cartan equation back and uses Proposition 14.3 to get the Maurer-Cartan connection. It also considers the second structural equation; the first structural equation is discussed in a previous chapter. Finally, the chapter derives some properties of the curvature form.
主束上的曲率
本章研究主束上的曲率。主g束上连接的曲率是一种g值2型,在某种意义上,它测量了该连接与积束上的毛雷尔-卡坦连接的偏差。李群G上的毛雷尔-卡坦形式Θ满足毛雷尔-卡坦方程。设M是光滑流形。然后,本章将毛雷尔-卡坦方程拉回来,并使用命题14.3来获得毛雷尔-卡坦的联系。它还考虑了第二个结构方程;第一个结构方程已在前一章中讨论过。最后,导出了曲率形式的一些性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信