Multivariate Time Series Imputation Based on Residual GRU and AANN

Jianming Yang, Xiaochen Lai, Liyong Zhang
{"title":"Multivariate Time Series Imputation Based on Residual GRU and AANN","authors":"Jianming Yang, Xiaochen Lai, Liyong Zhang","doi":"10.1145/3523089.3523098","DOIUrl":null,"url":null,"abstract":"The existence of missing values brings inconvenience to data mining. In this paper, we propose a residual gated recurrent unit (GRU) and auto-associative neural network (AANN) based imputation method to impute missing values of multivariate time series. Instead of only utilizing GRU to learn the dynamic law and estimate the missing values of time series, AANN is employed to improve the estimation accuracy. By using AANN, observed values of current time step can be applied to the estimation of missing values, which makes available information can be fully utilized. Moreover, outputs of adjacent recurrent units are connected to form temporal residual network to promote the learning ability of the entire model. The experiments on several datasets validate the effectiveness of proposed method for incomplete multivariate time series imputation.","PeriodicalId":131654,"journal":{"name":"2022 The 6th International Conference on Compute and Data Analysis","volume":"16 33","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 The 6th International Conference on Compute and Data Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3523089.3523098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The existence of missing values brings inconvenience to data mining. In this paper, we propose a residual gated recurrent unit (GRU) and auto-associative neural network (AANN) based imputation method to impute missing values of multivariate time series. Instead of only utilizing GRU to learn the dynamic law and estimate the missing values of time series, AANN is employed to improve the estimation accuracy. By using AANN, observed values of current time step can be applied to the estimation of missing values, which makes available information can be fully utilized. Moreover, outputs of adjacent recurrent units are connected to form temporal residual network to promote the learning ability of the entire model. The experiments on several datasets validate the effectiveness of proposed method for incomplete multivariate time series imputation.
基于残差GRU和AANN的多元时间序列插值
缺失值的存在给数据挖掘带来了不便。本文提出了一种基于残差门控循环单元(GRU)和自关联神经网络(AANN)的多元时间序列缺失值估算方法。采用AANN来提高估计精度,而不是仅仅利用GRU来学习时间序列的动态规律和估计缺失值。利用AANN,可以将当前时间步长的观测值用于缺失值的估计,使现有信息得到充分利用。并将相邻循环单元的输出连接起来,形成时间残差网络,提高整个模型的学习能力。在多个数据集上的实验验证了该方法对不完全多元时间序列的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信