Dataset Analysis for Anomaly Detection on Critical Infrastructures

German Lopez-Civera, Enrique de la Hoz
{"title":"Dataset Analysis for Anomaly Detection on Critical Infrastructures","authors":"German Lopez-Civera, Enrique de la Hoz","doi":"10.5220/0006017701510158","DOIUrl":null,"url":null,"abstract":"Anomaly Detection techniques allow to create robust security measures that provides early detection and are able to identify novel attacks that could not be prevented otherwise. Datasets represent a critical component in the process of designing and evaluating any kind of anomaly detection method. For this reason, in this paper we present the evaluation of two datasets showing the dependencies that arise between the techniques employed and the dataset itself. We also describe the characteristics that have to be taken into account while selecting a dataset to evaluate a detection algorithm in a critical infrastructure context.","PeriodicalId":172337,"journal":{"name":"International Conference on Data Communication Networking","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Data Communication Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0006017701510158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Anomaly Detection techniques allow to create robust security measures that provides early detection and are able to identify novel attacks that could not be prevented otherwise. Datasets represent a critical component in the process of designing and evaluating any kind of anomaly detection method. For this reason, in this paper we present the evaluation of two datasets showing the dependencies that arise between the techniques employed and the dataset itself. We also describe the characteristics that have to be taken into account while selecting a dataset to evaluate a detection algorithm in a critical infrastructure context.
关键基础设施异常检测的数据集分析
异常检测技术允许创建健壮的安全措施,提供早期检测,并能够识别无法阻止的新攻击。在设计和评估任何一种异常检测方法的过程中,数据集都是一个关键的组成部分。出于这个原因,在本文中,我们提出了两个数据集的评估,显示了所采用的技术与数据集本身之间的依赖关系。我们还描述了在选择数据集以评估关键基础设施环境中的检测算法时必须考虑的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信