Deciphering Big Data in Consumer Credit Evaluation

Jinglin Jiang, Li Liao, Xi Lu, Zhengwei Wang, Hongyu Xiang
{"title":"Deciphering Big Data in Consumer Credit Evaluation","authors":"Jinglin Jiang, Li Liao, Xi Lu, Zhengwei Wang, Hongyu Xiang","doi":"10.2139/ssrn.3312163","DOIUrl":null,"url":null,"abstract":"Abstract This paper examines the impact of large-scale alternative data on predicting consumer delinquency. Using a proprietary double-blinded test from a traditional lender, we find that the big data credit score predicts an individual’s likelihood of defaulting on a loan with 18.4% greater accuracy than the lender’s internal score. Moreover, the impact of the big data credit score is more significant when evaluating borrowers without public credit records. We also provide evidence that big data have the potential to correct financial misreporting.","PeriodicalId":284021,"journal":{"name":"International Political Economy: Investment & Finance eJournal","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Political Economy: Investment & Finance eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3312163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Abstract This paper examines the impact of large-scale alternative data on predicting consumer delinquency. Using a proprietary double-blinded test from a traditional lender, we find that the big data credit score predicts an individual’s likelihood of defaulting on a loan with 18.4% greater accuracy than the lender’s internal score. Moreover, the impact of the big data credit score is more significant when evaluating borrowers without public credit records. We also provide evidence that big data have the potential to correct financial misreporting.
解读消费者信用评估中的大数据
摘要本文研究了大规模替代数据对预测消费者犯罪的影响。通过对一家传统贷款机构进行的专有双盲测试,我们发现,大数据信用评分预测个人贷款违约可能性的准确率比贷款机构内部评分高出18.4%。此外,在评估无公共信用记录的借款人时,大数据信用评分的影响更为显著。我们还提供证据表明,大数据有可能纠正财务误报。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信