{"title":"Subgraph Enumeration in Large Social Contact Networks Using Parallel Color Coding and Streaming","authors":"Zhao Zhao, Maleq Khan, V. S. A. Kumar, M. Marathe","doi":"10.1109/ICPP.2010.67","DOIUrl":null,"url":null,"abstract":"Identifying motifs (or commonly occurring subgraphs/templates) has been found to be useful in a number of applications, such as biological and social networks; they have been used to identify building blocks and functional properties, as well as to characterize the underlying networks. Enumerating subgraphs is a challenging computational problem, and all prior results have considered networks with a few thousand nodes. In this paper, we develop a parallel subgraph enumeration algorithm, ParSE, that scales to networks with millions of nodes. Our algorithm is a randomized approximation scheme, that estimates the subgraph frequency to any desired level of accuracy, and allows enumeration of a class of motifs that extends those considered in prior work. Our approach is based on parallelization of an approach called color coding, combined with a stream based partitioning. We also show that ParSE scales well with the number of processors, over a large range.","PeriodicalId":180554,"journal":{"name":"2010 39th International Conference on Parallel Processing","volume":"15 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 39th International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPP.2010.67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52
Abstract
Identifying motifs (or commonly occurring subgraphs/templates) has been found to be useful in a number of applications, such as biological and social networks; they have been used to identify building blocks and functional properties, as well as to characterize the underlying networks. Enumerating subgraphs is a challenging computational problem, and all prior results have considered networks with a few thousand nodes. In this paper, we develop a parallel subgraph enumeration algorithm, ParSE, that scales to networks with millions of nodes. Our algorithm is a randomized approximation scheme, that estimates the subgraph frequency to any desired level of accuracy, and allows enumeration of a class of motifs that extends those considered in prior work. Our approach is based on parallelization of an approach called color coding, combined with a stream based partitioning. We also show that ParSE scales well with the number of processors, over a large range.