RippleGo - An AI-based Voyage Planner for US Inland Waterways

D. Sathiaraj, Andrew Smith, Eric Rohli, Cathy Hsieh, Arthur R. Salindong, Nicholas Woolsey, Andres Tec
{"title":"RippleGo - An AI-based Voyage Planner for US Inland Waterways","authors":"D. Sathiaraj, Andrew Smith, Eric Rohli, Cathy Hsieh, Arthur R. Salindong, Nicholas Woolsey, Andres Tec","doi":"10.1109/cai54212.2023.00162","DOIUrl":null,"url":null,"abstract":"RippleGo (https://www.ripplego.com) is an AI-based Software-as-a-Service application that makes voyages along the US Inland Waterways (IWS) safe and efficient. These voyages require enormous planning and data collection processes. Existing mariner data is available in disparate locations and lacks predictive or forecasting information. This makes a mariner’s voyage planning processes manual, ad-hoc, and present-minded. RippleGo utilizes two AI-based predictive technologies. The first technology is a deep learning based algorithm to forecast river levels. Advanced knowledge of river levels help in planning cargo loads and safely navigating under bridges and through locks. The second AI technology is a machine learning based technology that predicts time taken to travel from one point to any other point along the waterways. Advanced information on travel time will enable mariners to provide accurate ETAs to customers and port terminals and improve supply chain reliability. RippleGo combines the two methodologies to provide efficient voyage plans with better situational awareness, safety alerts (through Bridge Air Gap (BAG) and Under Keel Clearances (UKC)), improved reliability of delivery, and better utilization of water transportation ports and terminals.","PeriodicalId":129324,"journal":{"name":"2023 IEEE Conference on Artificial Intelligence (CAI)","volume":"21 11","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Conference on Artificial Intelligence (CAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/cai54212.2023.00162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

RippleGo (https://www.ripplego.com) is an AI-based Software-as-a-Service application that makes voyages along the US Inland Waterways (IWS) safe and efficient. These voyages require enormous planning and data collection processes. Existing mariner data is available in disparate locations and lacks predictive or forecasting information. This makes a mariner’s voyage planning processes manual, ad-hoc, and present-minded. RippleGo utilizes two AI-based predictive technologies. The first technology is a deep learning based algorithm to forecast river levels. Advanced knowledge of river levels help in planning cargo loads and safely navigating under bridges and through locks. The second AI technology is a machine learning based technology that predicts time taken to travel from one point to any other point along the waterways. Advanced information on travel time will enable mariners to provide accurate ETAs to customers and port terminals and improve supply chain reliability. RippleGo combines the two methodologies to provide efficient voyage plans with better situational awareness, safety alerts (through Bridge Air Gap (BAG) and Under Keel Clearances (UKC)), improved reliability of delivery, and better utilization of water transportation ports and terminals.
RippleGo -一个基于人工智能的美国内河航道航行计划器
RippleGo (https://www.ripplego.com)是一个基于人工智能的软件即服务应用程序,可以使美国内河航道(IWS)的航行安全高效。这些航行需要大量的规划和数据收集过程。现有的水手数据分布在不同的地点,缺乏预测或预报信息。这使得一个水手的航行计划过程是手工的,临时的,和当前的。RippleGo采用了两种基于人工智能的预测技术。第一项技术是基于深度学习的算法来预测水位。先进的水位知识有助于规划货物装载和安全通过桥下和船闸航行。第二项人工智能技术是一种基于机器学习的技术,可以预测从一个点到水路任何其他点所需的时间。先进的航行时间信息将使海员能够向客户和港口码头提供准确的eta,并提高供应链的可靠性。RippleGo结合了这两种方法,提供了有效的航行计划,具有更好的态势感知、安全警报(通过桥梁气隙(BAG)和龙骨下间隙(UKC)),提高了交付的可靠性,更好地利用了水运港口和码头。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信