Sliding mode control parameter tuning using ant colony optimization for a 2-DOF hydraulic servo system

Lindokuhle J. Mpanza, J. Pedro
{"title":"Sliding mode control parameter tuning using ant colony optimization for a 2-DOF hydraulic servo system","authors":"Lindokuhle J. Mpanza, J. Pedro","doi":"10.1109/I2CACIS.2016.7885322","DOIUrl":null,"url":null,"abstract":"A tuning mechanism for a sliding mode controller (SMC) used for a 2-DOF hydraulic servo system is proposed. In this paper we aim to develop techniques for optimally tuning the SMC parameters for a system that tracks the vertical displacement and angular orientation of the parallel manipulator. We propose an ant colony optimization (ACO) algorithm to tune four SMC parameters. The performance of ACO is compared to the manually-tuned and genetic algorithm (GA)-tuned SMC. The results from simulation showed that the ACO-SMC performance is comparable to that of GA-SMC, for tracking the heave and the pitch of the system when evaluating tracking error and the actuator action required. The GA-SMC exhibits high frequency chattering, while the ACO-SMC does not. From the simulated results we conclude that, overall, the application of ACO to SMC parameter tuning improves the systems performance.","PeriodicalId":399080,"journal":{"name":"2016 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS)","volume":"14 10","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2CACIS.2016.7885322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A tuning mechanism for a sliding mode controller (SMC) used for a 2-DOF hydraulic servo system is proposed. In this paper we aim to develop techniques for optimally tuning the SMC parameters for a system that tracks the vertical displacement and angular orientation of the parallel manipulator. We propose an ant colony optimization (ACO) algorithm to tune four SMC parameters. The performance of ACO is compared to the manually-tuned and genetic algorithm (GA)-tuned SMC. The results from simulation showed that the ACO-SMC performance is comparable to that of GA-SMC, for tracking the heave and the pitch of the system when evaluating tracking error and the actuator action required. The GA-SMC exhibits high frequency chattering, while the ACO-SMC does not. From the simulated results we conclude that, overall, the application of ACO to SMC parameter tuning improves the systems performance.
基于蚁群优化的二自由度液压伺服系统滑模控制参数整定
提出了一种用于二自由度液压伺服系统的滑模控制器的整定机构。在本文中,我们的目的是开发的技术,以优化调整SMC参数的系统,跟踪垂直位移和角度方向的并联机械手。我们提出了一种蚁群优化算法来调整四个SMC参数。将蚁群算法的性能与人工调谐和遗传算法调谐的蚁群算法进行了比较。仿真结果表明,ACO-SMC在跟踪系统的升沉和俯仰方面的性能与GA-SMC相当,同时评估了跟踪误差和执行机构所需的动作。GA-SMC表现出高频抖振,而ACO-SMC不表现出高频抖振。仿真结果表明,将蚁群算法应用于SMC参数整定,总体上提高了系统性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信