A Framework for Automatic Anomaly Detection in Mobile Applications

M. Baluda, Marco Pistoia, Paul C. Castro, Omer Tripp
{"title":"A Framework for Automatic Anomaly Detection in Mobile Applications","authors":"M. Baluda, Marco Pistoia, Paul C. Castro, Omer Tripp","doi":"10.1145/2897073.2897718","DOIUrl":null,"url":null,"abstract":"It is standard practice in enterprises to analyze large amounts of logs to detect software failures and malicious behaviors. Mobile applications pose a major challenge to centralized monitoring as network and storage limitations prevent fine-grained logs to be stored and transferred for off-line analysis. In this paper we introduce EMMA, a framework for automatic anomaly detection that enables security analysis as well as in-the-field quality assurance for enterprise mobile applications, and incurs minimal overhead for data exchange with a back-end monitoring platform. EMMA instruments binary applications with a lightweight anomaly-detection layer that reveals failures and security threats directly on mobile devices, thus enabling corrective measures to be taken promptly even when the device is disconnected. In our empirical evaluation, EMMA detected failures in unmodified Android mobile applications.","PeriodicalId":296509,"journal":{"name":"2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems (MOBILESoft)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems (MOBILESoft)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2897073.2897718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

It is standard practice in enterprises to analyze large amounts of logs to detect software failures and malicious behaviors. Mobile applications pose a major challenge to centralized monitoring as network and storage limitations prevent fine-grained logs to be stored and transferred for off-line analysis. In this paper we introduce EMMA, a framework for automatic anomaly detection that enables security analysis as well as in-the-field quality assurance for enterprise mobile applications, and incurs minimal overhead for data exchange with a back-end monitoring platform. EMMA instruments binary applications with a lightweight anomaly-detection layer that reveals failures and security threats directly on mobile devices, thus enabling corrective measures to be taken promptly even when the device is disconnected. In our empirical evaluation, EMMA detected failures in unmodified Android mobile applications.
移动应用中自动异常检测的框架
分析大量日志以检测软件故障和恶意行为是企业的标准做法。移动应用程序对集中式监控提出了主要挑战,因为网络和存储限制阻止了细粒度日志的存储和传输以进行离线分析。在本文中,我们介绍了EMMA,这是一个用于自动异常检测的框架,可以为企业移动应用程序提供安全分析和现场质量保证,并且与后端监控平台进行数据交换的开销最小。EMMA为二进制应用程序提供轻量级的异常检测层,可直接在移动设备上显示故障和安全威胁,从而即使在设备断开连接时也能及时采取纠正措施。在我们的实证评估中,EMMA在未修改的Android移动应用程序中检测到故障。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信